Paper | Title | Other Keywords | Page | |||||
---|---|---|---|---|---|---|---|---|
MOXKI03 | Status of the SNS - Machine and Science | linac, target, injection, beam-transport | 7 | |||||
|
Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. |
The Spallation Neutron Source (SNS) will be the world's leading pulsed neutron source, with design beam power capability of 1.4 MW. The SNS Construction Project was completed in June 2006. The accelerator complex was successfully commissioned during the construction phase of the project in seven discrete commissioning runs. The facility is now in the first of a three year performance ramp-up phase, in which the beam power, reliability and operating time will be increased to the baseline design values of 1.4 MW, 90% and 5000 hours respectively. Meanwhile, neutron scattering instruments are being constructed and commissioned in preparation for full user operations in 2009. The progress toward bringing the SNS to its full capabilities will be presented. |
|
Slides
|
|
|
||
MOYKI03 | Energy Recovery Linacs | electron, linac, emittance, gun | 22 | |||||
|
Energy recovey linacs have made great strides in the past decade and are now poised to revolutionize light sources, lepton-hadron colliders, electron coolers, high-power FELs, Compton sources and THz radiators. The status and direction of ERLS will be discussed.
|
|
|
Slides
|
|
|
||
MOOAKI02 | Overall HOM Measurement at High Beam Currents in the PEP-II SLAC B-Factory | radiation, synchrotron, synchrotron-radiation, vacuum | 45 | |||||
|
Funding: Work supported by US DOE contract DE-AC02-76SF00515 |
We describe the method to measure total HOM losses and synchrotron losses in a storage ring based on a straightforward model of beam-cavity interaction and precise knowledge of RF power distribution. This method works well at higher currents. The comparison of the measured HOM losses and estimation for cavity and resistive wall losses is given for both LER and HER rings of the PEP-II B-factory. |
|
Slides
|
|
|
||
MOOAAB03 | High Power Operation of the JLab IR FEL Driver Accelerator | laser, wiggler, electron, vacuum | 83 | |||||
|
Funding: This work supported by the Off. of Naval Research, the Joint Technology Off., the Commonwealth of Virginia, the Air Force Research Lab, Army Night Vision Lab, and by DOE Contract DE-AC05-060R23177. |
Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation. |
|
Slides
|
|
|
||
MOPAN028 | Current Status of Virtual Accelerator at J-PARC 3 GeV Rapid Cycling Synchrotron | controls, injection, acceleration, simulation | 215 | |||||
|
We have developed the logical accelerator called "Virtual Accelerator" based on EPICS for 3 GeV Rapid Cycling Synchrotron (RCS) in J-PARC. The Virtual Accelerator has a mathematical model of the beam dynamics in order to simulate the behavior of the beam and enables the revolutionary commissioning and operation of an accelerator. Additionally, we have constructed the commissioning tool based on the Virtual Accelerator. We will present a current status of the Virtual Accelerator system and some commissioning tool.
|
|
|
|||||
MOPAN081 | The LHC Collimator Controls Architecture - Design and Beam Tests | controls, collimation, survey, injection | 344 | |||||
|
The LHC collimation system will require simultaneous management by the LHC control system of more than 500 jaw positioning mechanisms in order to ensure the required beam cleaning and machine protection performance in all machine phases, from injection at 450~GeV to collision at 7~TeV. Each jaw position is a critical parameter for the machine safety which could cause a beam dump. In this paper, the architecture of the LHC collimator controls is presented. The basic design to face the accurate and real-time control of the LHC collimators and the interfaces to the other components of LHC Software Application and control infrastructures are described. The full controls architecture has been tested off-line in dedicated test benches, and in the real accelerator environment in the CERN SPS during beam tests with a full scale collimator prototype. The results and the lessons learned are presented.
|
|
|
|||||
MOPAS081 | Spallation Neutron Source (SNS) Diamond Stripper Foil Development | proton, injection, plasma, electron | 620 | |||||
|
Funding: SNS is managed by UT-Battelle, LLC, for the U. S. DOE under contract DE-AC05-00OR22725. DOE contract W-7405-ENG-36 (LANL) and Japan SPS contract 18540303 (KEK) supported work at those institutions. |
Diamond stripping foils are under development for the SNS. Free-standing, flat 350 microgram/cm2 foils as large as 17 x 25 mm have been prepared. These nano-textured polycrystalline foils are grown by microwave plasma-assisted chemical vapor deposition in a corrugated format to maintain their flatness. They are mechanically supported on a single edge by a residual portion of their silicon growth substrate; typical fine foil supporting wires are not required for diamond foils. Six foils were mounted on the SNS foil changer in early 2006 and have performed well in commissioning experiments at reduced operating power. A diamond foil was used during a recent experiment where 12 microCoulombs of protons, approximately 40% of the design value, were stored in the ring. A few diamond foils have been tested at LANSCE/PSR, where one foil was in service for a period of five months (820 Coulombs of integrated injected charge) before it was replaced. Diamond foils have also been tested in Japan at KEK (650 keV H-) where their lifetimes slightly surpassed those of evaporated carbon foils, but fell short of those for Sugai's new hybrid boron carbon (HBC) foils. |
|
|||||
TUOBKI01 | Experimental Characterization of the Spallation Neutron Source Accumulator Ring Collimation System | collimation, simulation, quadrupole, emittance | 703 | |||||
|
Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. |
The SNS ring and associated transport lines, commissioned in January 2006, are designed to accumulate and deliver up to 1.5·1014, 1 GeV protons at 60 Hz to a liquid mercury target for neutron production. In order to control activation and to allow for routine hands-on maintenance of accelerator components, beam loss in most of the ring must remain below 1 W/m . For the full 1.4 MW beam, this translates to a fractional beam loss limit of 0.01%. Accomplishing this loss limit at full beam power will require successful utilization of the ring's two-stage betatron collimation system. In this paper we present the results of initial collimation experiments. We characterize the collimation-induced beam-loss pattern and compare our results with simulations. In addition, we discuss other existing beam-loss-related challenges in the ring. |
|
Slides
|
|
|
||
TUOCKI02 | Summary of the RHIC Performance during the FY07 Heavy Ion Run | luminosity, ion, proton, injection | 722 | |||||
|
Funding: Work performed under Contract Number DE-AC02-98CH10886 under the auspices of the US Department of Energy. |
After the last successful RHIC Au-Au run in 2004 (Run-4), RHIC experiments now require significantly enhanced luminosity to study very rare events in heavy ion collisions. RHIC has demonstrated its capability to operate routinely above its design average luminosity per store of 2x1026 cm-2 s-1. In Run-4 we already achieved 2.5 times the design luminosity in RHIC. This luminosity was achieved with only 40% of bunches filled, and with β* = 1 m. However, the goal is to reach 4 times the design luminosity, 8x1026 cm-2 s-1, by reducing the beta* value and increasing the number of bunches to the accelerator maximum of 111. In addition, the average time in store should be increased by a factor of 1.1 to about 60% of calendar time. We present an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency of RHIC Au-Au operations during Run-7. |
|
Slides
|
|
|
||
TUODKI03 | Multi-batch Slip Stacking in the Main Injector at Fermilab | injection, kicker, simulation, booster | 742 | |||||
|
The Main Injector (MI) is going to use slip stacking scheme for the NuMI neutrino experiment for effectively increasing proton intensity to the NuMI target by about a factor two in a MI cycle. The MI is going to accept 11 pluses at injection energy from the Booster and accelerate them to 120 GeV. By using Slip stacking, two of them are merged into one and sent to Anti-proton production and 9 of them, one single and four doubled density pulses, are going to be sent to the Numi beam line. We have been doing low intensity beam studies with 11 pulses injection and accelerated them with the total intensity of 3·1012 ppp to 120GeV. We discuss beam loss and technical issues on multi-batch slip stacking.
|
|
|
Slides
|
|
|
||
TUZAAB02 | Recent Developments in Understanding Beam Loss in High-intensity Synchrotrons | resonance, space-charge, synchrotron, emittance | 794 | |||||
|
Recent advances in understanding space-charge-induced beam loss and emittance growth have been achieved, which allow quantitative predictions for large number of turns (exceeding 105). In this talk we review the theoretical model of trapping by space charge effects, simulation results and experimental findings obtained at the CERN Proton Synchrotron and the heavy ion synchrotron SIS18 at GSI. The impact of these effects on the beam loss budget/beam loss control for heavy ion beams in the SIS100 synchrotron in the FAIR project will be presented. Applications of these mechanisms to e-cloud space charge interaction with hadron beams in the LHC will be also be discussed.
|
|
|
Slides
|
|
|
||
TUZBAB02 | The Extreme Value Theory to Estimate Beam Losses in High Power Linacs | linac, quadrupole, simulation, beam-transport | 815 | |||||
|
The influence of random perturbations of high intensity accelerator elements on the beam losses is considered. This influence is analyzed with the help of the Extreme Value Theory (EVT) to allow loss estimates for a very low fraction of the beam. Many fields of modern science and engineering have to deal with events which are rare but have significant consequences. EVT is considered to provide the basis for the statistical modeling of such extremes events (extreme variations of financial market for insurance companies or extreme wind speed for electric companies). To illustrate the application of this theory to beam losses estimates, the SPIRAL2 driver is used. This 5 mA deuteron accelerator is simulated from the output of the source to the target with high resolution PIC modelisations (up to 1.3 million macro-particles) using realistic external fields.
|
|
|
Slides
|
|
|
||
TUODAB02 | Electron Cloud Generation and Trapping in a Quadrupole Magnet at the LANL PSR | electron, quadrupole, diagnostics, proton | 828 | |||||
|
Funding: Work supported by DOE SBIR Grant No. DE-FG02-04ER84105 and CRADA No. LA05C10535 between TechSource, Inc. and the Los Alamos National Laboratory. |
Recent beam physics studies on the two-stream e-p instability at LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Experimental results will be presented on various characteristics of electron cloud obtain from experiments using this diagnostic and compared with simulations. Results include data on flux and energy spectra of electrons striking the vacuum chamber, the line density and lifetime of electrons trapped in the quadrupole after the beam has been extracted as well as evidence regarding electrons ejected from the magnet during passage of the proton beam. |
|
Slides
|
|
|
||
TUZAC03 | LHC Machine Protection | extraction, injection, kicker, dumping | 878 | |||||
|
This paper addresses the imposing challenges of the LHC Machine Protection System.
|
|
|
Slides
|
|
|
||
TUPAN013 | FAIR Synchrotron Operation with Low Charge State Heavy Ions | ion, vacuum, synchrotron, lattice | 1416 | |||||
|
Funding: Work supported by EU, contract No. 515876 |
Beam loss caused by charge changing process in connection with dynamic vacuum effects may limit the maximum number of accelerated heavy ions with low charge states in the existing synchrotron SIS18 and the planned SIS100/SIS300 of the FAIR project. With the aim to stabilize the vacuum dynamics and to control ionization beam loss, a substantial upgrade program has been defined for SIS18 and is presently realized. For SIS100, a new lattice design concept has been developed, where each lattice cell acts as a charge seperator and thereby enables the local control of beam loss. Simulation, conducted with the code STRAHLSIM, of the time dependent evolution of beam loss, dynamic residual gas pressure and the effect of the proposed dedicated ion catcher systems will be presented. |
|
|||||
TUPAN039 | Profile Measurement and Transverse Matching in J-PARC Linac | linac, electron, simulation, scattering | 1472 | |||||
|
Beam commissioning of J-PARC linac has been performed since November 2006. In the beam commissioning, transverse matching has been performed by measurement of beam profiles and emittance with wire scanners. In this presentation, detail of wire scanners and the method of matching are described.
|
|
|
|||||
TUPAN051 | Design of Dynamic Collimator for J-PARC Main Ring | target, collimation, extraction, injection | 1505 | |||||
|
The J-PARC main ring has a beam collimator section downstream of the injection area. The allowed beam loss is about 500 W. The beam halo during injection can be scraped by a standard collimator scheme. The beam halo can grow during the acceleration. Such a halo may cause a serious beam loss for extracted beam. A collimation during acceleration (dynamic collimator) is usefull to reduce the uncontrolable beam loss at the extraction. We will report the design and simulation of the dynamic collimation.
|
|
|
|||||
TUPAN052 | New Beam Optics Design of Injection/Fast Extraction/Abort Lines of J-PARC Main Ring | extraction, injection, kicker, quadrupole | 1508 | |||||
|
J-PARC Main Ring has three straight sections for injection, slow extraction and fast extraction. Injection line has been redesigned so as to give a higher reliability for the thin septa. The magnetic field can be reduced by adding an extra kicker. New optics for the fast extraction with a larger acceptance has been proposed. In this design, the thin septa are replaced by kickers with a large aperture. Beam with an arbitrary energy can be aborted from opposite side from the fast extraction. An external abort line has been designed to deliver the beam aborted with an arbitrary energy to a dump just by using a static quadrupole doublet for the focus.
|
|
|
|||||
TUPAN061 | Updated Simulation for the Nuclear Scattering Loss Estimation at the RCS Injection Area | scattering, injection, simulation, space-charge | 1526 | |||||
|
We have updated the simulation for the realistic beam loss estimation at the RCS (Rapid Cycling Synchrotron) injection area of J-PARC(Japan Proton Accelerator Research Complex). At the injection area, beam loss caused by the nuclear scattering together with the multiple coulomb scattering at the charge-exchange foil is the dominant one and is an important issue for designing mainly the foil thickness and other beam elements like, the falling time of bump magnets after the injection is finished and so on. The simulation tool GEANT for the scattering effect and the real injection process have been employed together in order to estimate the beam loss turn by turn including identification of loss points too.
|
|
|
|||||
TUPAN088 | Beam Scraping for LHC Injection | injection, emittance, proton, extraction | 1580 | |||||
|
Operation of the LHC will require injection of very high intensity beams from the SPS to the LHC. Fast scrapers have been installed and will be used in the SPS to detect and remove any existing halo before beams are extracted, to minimize the probability for quenching of super-conducting magnets at injection in the LHC. We briefly review the functionality of the scraper system and report about measurements that have recently been performed in the SPS on halo scraping and re-population of tails.
|
|
|
|||||
TUPAN096 | High Intensity Commissioning of the SPS LSS4 Extraction for CNGS | extraction, radiation, proton, kicker | 1604 | |||||
|
The fast extraction in SPS LSS4 serves both the anti-clockwise ring of the LHC and the CERN Gran Sasso Neutrino facility (CNGS). The latter requires 2 fast extractions of 10.5 microsecond long batches per cycle, 50 milliseconds apart. Each batch will consist of 2.4·10+13 protons at 400 GeV, a factor of 10 in energy density above the equipment damage limit in case of beam loss. Active and passive protection systems are in place to guarantee safe operation and to respect the radiation limits close to the extraction region. In summer 2006 CNGS was commissioned including extraction with high intensity. A thorough setting-up of the extraction was performed as part of the CNGS commissioning, including aperture and beam loss measurements, and defining and checking of interlock thresholds for the extraction trajectory, magnet currents, kicker voltage and beam loss monitors. The various systems and the associated risks are discussed, the commissioning results are summarised and a comparison is made with predictions from simulations.
|
|
|
|||||
TUPAN097 | Studies of Beam Losses from Failures of SPS Beam Dump Kickers | kicker, simulation, extraction, target | 1607 | |||||
|
The SPS beam dump extraction process was studied in detail to investigate the possibility of operation with reduced kicker voltage and to fully understand the trajectory and loss pattern of the mis-kicked beams. This paper briefly describes the SPS beam dump process, and presents the tracking studies carried out for failure cases. The simulation results are compared to the results of measurements made with low intensity beams.
|
|
|
|||||
TUPAN101 | Tracking Studies with Variable Magnetic Field to Characterize Quadrupole Failures in LHC | quadrupole, resonance, injection, simulation | 1616 | |||||
|
During LHC operation, energies up to 360 MJ will be stored in each proton beam and more than 10 GJ in the superconducting magnets. With these energies, a magnet failure can lead to important equipment damage if the beam is not extracted in time. The machine protection systems should detect such failures and trigger the beam extraction system. In order to characterize the beam response after magnet failures, tracking simulations have been performed with MAD-X. The magnetic field was set to change with time according to realistic current changes in the electrical circuits with the magnets after a powering failure. The effect on the beam of powering failures in the normal conducting quadrupoles has been studied. For fast failures (beam lost in less than 100 ms) the nonlinear effects are negligible. For slower failures, higher order resonances may lead to beam losses of up to ~8% of the beam.
|
|
|
|||||
TUPAN107 | Beam Loss Response Measurements with an LHC Prototype Collimator in the SPS | controls, alignment, collimation, impedance | 1622 | |||||
|
Beam tests with an LHC prototype collimator were performed at the SPS in autumn 2006. Applying a new collimator control system many new beam measurements were performed. This contribution presents results on collimator-induced beam loss measurements and their applications to beam-based alignment of collimators and measurements of the beam size and position. Interesting features of the recorded beam loss signals are illustrated and possible impacts for LHC operation are discussed. The measured loss distributions around the full SPS ring are analyzed and compared with simulations.
|
|
|
|||||
TUPAN112 | Slow-Wave Chopper Structures for Next Generation High Power Proton Drivers | linac, proton, vacuum, coupling | 1637 | |||||
|
Funding: Work supported by CCLRC/RAL/ASTeC and the European Community Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract No. RII3-CT-50295) |
A description is given of slow-wave chopper structures for the 3.0 MeV, 60 mA, H- MEBT lines of the CERN Linac 4 and RAL Front-End Test Stands (FETS). Transmission line properties and transverse E-field uniformity for the original European Spallation Source (ESS) designs* have been refined by modelling static, and time dependent electromagnetic fields in the 3D CST 'EM Studio', and 'Microwave Studio' codes**. In addition, the original compact, radiation hard, vacuum compatible designs have been simplified and reconfigured to be compatible with standard NC machining practice. Transmission line properties in the frequency and time domain, together with E-field uniformity in the axial and transverse planes, are presented.
* M. A. Clarke-Gayther, 'Slow-wave electrode structures for the ESS 2.5 MeV fast chopper', Proc. of the 2003 Particle Accelerator Conference (PAC), Portland, Oregon, USA, p. 1473-1475.** www.cst.com |
|
|||||
TUPAN117 | Progress on Dual Harmonic Acceleration on the ISIS Synchrotron | acceleration, synchrotron, proton, power-supply | 1649 | |||||
|
The ISIS facility at the Rutherford Appleton Laboratory in the UK is currently the most intense pulsed, spallation, neutron source. The accelerator consists of a 70 MeV H- linac and an 800 MeV, 50 Hz, rapid cycling, proton synchrotron. The synchrotron beam intensity is 2.5·1013 protons per pulse, corresponding to a mean current of 200 μA. The synchrotron beam is accelerated using six, ferrite loaded, RF cavities with harmonic number 2. Four additional, harmonic number 4, cavities have been installed to increase the beam bunching factor with the potential of raising the operating current to 300μA. The dual harmonic system has now been used operationally for the first time, running reliably throughout the last ISIS user cycle of 2006. This paper reports on the hardware commissioning, beam tests and improved operational results obtained so far with dual harmonic acceleration.
|
|
|
|||||
TUPAS004 | A Driver LINAC for the Advanced Exotic Beam Laboratory: Physics Design and Beam Dynamics Simulations | linac, simulation, emittance, lattice | 1661 | |||||
|
Funding: This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC-02-06CH11357 |
The Advanced Exotic Beam Laboratory (AEBL) being developed at ANL consists of an 833 MV heavy-ion driver linac capable of producing uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. We have designed all accelerator components including a two charge state LEBT, an RFQ, a MEBT, a superconducting linac, a stripper section and beam switchyard. We present the results of an optimized linac design and end-to-end simulations which include possible machine errors. |
|
|||||
TUPAS010 | Studies of Beam Properties and Main Injector Loss Control using Collimators in the Fermilab Booster to Main Injector Transfer Line | booster, proton, collimation, radiation | 1670 | |||||
|
Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000. |
High intensity operation of the Fermilab Main Injector has resulted in increased activation of machine components. Efforts to permit operation at high power include creation of collimation systems to localize losses away from locations which require maintenance. As a first step, a collimation system to remove halo from the incoming beam was installed in the Spring 2006 Facility Shutdown*. We report on commissioning studies and operational experience including observations of Booster beam properties, effects on Main Injector loss and activation, and operational results.
* B. C. Brown, et al., "Collimation System for the Fermilab Booster to Main Injector Transfer Line", this conference. |
|
|||||
TUPAS015 | Operational Aspects of the Main Injector Large Aperture Quadrupole | quadrupole, lattice, extraction, injection | 1685 | |||||
|
Funding: Work supported by Universities Research Association, Inc. under contract No. DE-AC02-76CH03000 with the U. S. Dept. of Energy. |
A two-year Large Aperture Quadrupole (WQB) Project was completed in the summer of 2006 at Fermilab.* Nine WQBs were designed, fabricated and bench-tested by the Technical Division. Seven of them were installed in the Main Injector and the other two for spares. They perform well. The aperture increase meets the design goal and the perturbation to the lattice is minimal. The machine acceptance in the injection and extraction regions is increased from 40π to 60π mm-mrad. This paper gives a brief report of the operation and performance of these magnets. Details can be found in Ref**.
* D. Harding et al, "A Wide Aperture Quadrupole for the Fermilab Main Injector," this conference. |
|
|||||
TUPAS016 | Collimation System Design for Beam Loss Localization with Slipstacking Injection in the Fermilab Main Injector | injection, collimation, simulation, proton | 1688 | |||||
|
Results of modeling with the STRUCT and MARS15 codes of beam loss localization and related radiation effects are presented for the slipstacking injection to the Fermilab Main Injector. Simulations of proton beam loss are done using multi-turn tracking with realistic accelerator apertures, nonlinear fields in the accelerator magnets and time function of the RF manipulations to explain the results of beam loss measurements. The collimation system consists of one primary and four secondary collimators. It intercepts a beam power of 1.6 kW at a total scraping rate of 5%, with a beam loss rate in the ring outside the collimation region of 1 W/m or less. Based on thorough energy deposition and radiation modeling, a corresponding collimator design was developed that satisfies all the radiation and engineering constraints.
|
|
|
|||||
TUPAS019 | A Dynamic Dispersion Insert for the Fermilab Main Injector for Momentum Collimation | lattice, collimation, closed-orbit, collider | 1697 | |||||
|
The Fermilab Main Injector accelerator is designed as a FODO lattice with zero dispersion straight sections. A scheme will be presented that can dynamically alter the dispersion of one of the long straight sections to create a non-zero dispersion straight section suitable for momentum collimation. During the process of slip stacking DC beam is generated which is lost during the first few milliseconds of the ramp. A stationary massive primary collimator/absorber with optional secondary masks could be utilized to isolate beam loss due to uncaptured beam.
|
|
|
|||||
TUPAS041 | Injection Parameters Optimization for the Fermilab Booster | injection, space-charge, booster, linac | 1736 | |||||
|
The maximal capacitance for the Booster to deliver the 8-GeV beam to downstream accelerators is limited by the beam loss. Most of losses happen at injection due to space charge effect being the strongest at the injection energy. Optimizing the RF voltage ramp in the presence of the space charge effect to capture more beam and simultaneously keep small beam emittance has been numerically investigated using 3-D STRUCT code. The results of simulations agree well with the measurements in the machine. Possibilities, such as beam painting and using the second rf harmonic at injection, for further reductions of beam loss in order to reach the maximum beam intensity delivered from the Booster have been investigated.
|
|
|
|||||
TUPAS042 | Transition Crossing Simulation at the Fermilab Booster | space-charge, booster, simulation, emittance | 1739 | |||||
|
The demand in high intensity and low emittance of the beam extracted from the Booster requires a better control over the momentum spread growth and bunch length shortening at transition, in order to prevent beam loss and coupled bunch instability. Since the transition crossing involves both longitudinal and transverse dynamics, the recently modified 3-D STRUCT code provides an opportunity to numerically investigate different transition schemes in the machine environment, and apply the results of simulation to minimize the beam loss and emittance growth operationally.
|
|
|
|||||
TUPAS074 | Performance of the SNS Front End and Linac | linac, quadrupole, radiation, target | 1820 | |||||
|
Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy. |
The Spallation Neutron Source accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of an H- injector, capable of producing one-ms-long pulses at 60 Hz repetition rate with 38 mA peak current, a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The 2.5 MeV beam from the Front End is accelerated to 86 MeV in the Drift Tube Linac, then to 185 MeV in a Coupled-Cavity Linac and finally to 1 GeV in the Superconducting Linac. With the completion of beam commissioning, the accelerator complex began operation in June 2006 and beam power is being gradually ramped up toward the design goal. Operational experience with the injector and linac will be presented including chopper performance, transverse emittance evolution along the linac, and the results of a beam loss study. |
|
|||||
TUPAS095 | Experiments with a DC Wire in RHIC | simulation, emittance, proton, beam-beam-effects | 1859 | |||||
|
Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886. |
A DC wire has been installed in RHIC to explore the long-range beam-beam effect, and test its compensation. We report on experiments that measure the effect of the wire's electro-magnetic field on the beam's lifetime and tune distribution, and accompanying simulations. |
|
|||||
TUPAS097 | Studies of Electron-Proton Beam-Beam Interactions in eRHIC | electron, proton, emittance, simulation | 1865 | |||||
|
Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886, DE-FG02-92ER40747 and U. S. NSF under contract PHY-0552389. |
Beam-beam effects present one of major factors limiting the luminosity of colliders. In the linac-ring option of eRHIC design, an electron beam accelerated in a superconducting energy recovery linac collides with a proton beam circulating in the RHIC ring. There are some features of beam-beam effects which require careful examination in linac-ring configuration. First, the beam-beam interaction can induce specific head-tail type instability of the proton beam referred to as kink instability. Thus, beam stability conditions should be established to avoid proton beam loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure beam quality is good enough for the energy recovery pass. In addition, fluctuations of electron beam current and/or electron beam size, as well as transverse offset, can cause proton beam emittance growth. The tolerances for those factors should be determined and possible countermeasures should be developed to mitigate the emittance growth. In this paper, a soft Gaussian strong-strong simulation is used to study all of mentioned beam-beam interaction features and possible techniques to reduce the emittance growth. |
|
|||||
WEOBC02 | Vertical Instability at IPNS RCS | synchrotron, proton, acceleration, extraction | 2022 | |||||
|
Funding: This work is supported by the U. S. Department of Energy under contract no. W-31-109-ENG-38. |
The Intense Pulsed Neutron Source (IPNS) Rapid Cycling Synchrotron (RCS) accelerates 3.2x 1012 protons from 50 MeV to 450 MeV at 30 Hz. During the 14.2 ms acceleration period, the RF frequency varies from 2.21 MHz to 5.14 MHz. The beam current is limited by a vertical instability. By analyzing turn-by-turn Beam Position Monitor (BPM) data, large amplitude mode 0 and mode 1 vertical beam centroid oscillations were observed in the later part of the acceleration cycle. The oscillations develop in the tail of the bunch, build up and remain localized in the later part of the bunch. This vertical instability was compared with a head-tail instability that was intentionally induced in the RCS by adjusting the trim-sextupoles to make the horizontal chromaticity positive (below transition). It appears that our vertical instability is not typical head-tail instability. More data analysis and experiments were performed to characterize the instability. |
|
Slides
|
|
|
||
WEPMN068 | Design of the Modulator for the CTF3 Tail Clipper Kicker | kicker, impedance, damping, cathode | 2185 | |||||
|
The goal of the present CLIC test facility (CTF3) is to demonstrate the technical feasibility of specific key issues in the CLIC scheme. The extracted beam from the combiner ring (CR), of 35 A in magnitude and 140 ns duration, is sent to the new CLic EXperimental area (CLEX) facility. A Tail Clipper (TC) is required, in the CR to CLEX transfer line, to allow the duration of the extracted beam pulse to be adjusted. It is proposed to use a stripline kicker for the tail clipper, with each of the deflector plates driven to equal but opposite potential. The tail clipper kick must have a fast rise-time, of not more than 5 ns, in order to minimize uncontrolled beam loss and operate at a rate of up to 50 Hz. Several different options are being investigated to meet the demanding specifications for the modulator of the tail clipper. This paper discusses options considered for the fast, high voltage, semiconductor switches and shows results of initial tests on the switches.
|
|
|
|||||
WEPMS081 | Simulation and Initial Test Result of the SNS Ring RF System | simulation, controls, beam-loading, feedback | 2520 | |||||
|
Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy |
A simulation code has been developed for the study of the Spallation Neutron Source (SNS) ring RF control. The code uses the time-domain solvers to compute beam-cavity interactions, and FFT methods to simulate time responses of the linear RF system. The important ingredients of the system are considered in the simulation model, which include the beam loading, dynamic cavity detuning, circuit bandwidth, loop delay, proportional-integral (P-I) controller for feedback and adaptive feed forward, stochastic noise, with-in-turn RF parameter change, beam current fluctuation and beam bunch leakage, etc. The beam loss in the accumulation ring goes up as the beam power increases, and thus a precise control of bunching voltage phase and amplitude is required to limit beam loss. This simulation tool will help the development a correct RF control and to achieve the goal of minimizing the beam loss. |
|
|||||
THXAB03 | Commissioning of the Spallation Neutron Source Accelerator Systems | linac, injection, target, coupling | 2603 | |||||
|
Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. |
The Spallation Neutron Source accelerator complex consists of a 2.5 MeV H- front-end injector system, a 186 MeV normal-conducting linear accelerator, a 1 GeV superconducting linear accelerator, an accumulator ring, and associated beam transport lines. The linac was commissioned in five discrete runs, starting in 2002 and completed in 2005. The accumulator ring and associated beam transport lines were commissioned in two runs in February and April 2006. With the completed commissioning of the SNS accelerator, the facility has begun initial low-power operations. In the course of beam commissioning, most beam performance parameters and beam intensity goals have been achieved at low duty factor. A number of beam dynamics measurements have been performed, including emittance evolution, transverse coupling in the ring, beam instability thresholds, and beam distributions on the target. The commissioning results, achieved beam performance and initial operating experience of the SNS will be presented. |
|
Slides
|
|
|
||
THXC01 | LHC Beam Instrumentation | coupling, feedback, synchrotron, pick-up | 2630 | |||||
|
The LHC will have very tight tolerances on all beam parameters. Their precise measurement is therefore very important for controlling and understanding the machine. With over two orders of magnitude higher stored beam energy than previous colliders, machine protection is also an issue, with any beam losses having to be closely monitored. This presentation will aim to give an overview of the beam instrumentation foreseen for the LHC together with the requirements for initial and nominal operation. A summary of the main systems will be followed by a discussion of areas where there have been recent advances, such as in the measurement of tune, chromaticity and coupling.
|
|
|
Slides
|
|
|
||
THOBC01 | Status of Various SNS Diagnostic Systems | target, diagnostics, pick-up, instrumentation | 2658 | |||||
|
Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725 |
The Spallation Neutron Source (SNS) accelerator systems are ramping up to deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. Enhancements or additions have been made to several diagnostics instruments to support the ramp up in intensity, improve reliability, and/or add functionality. The Beam Current Monitors now support increased rep rates, the Harp system now includes charge density calculations for the target, and a new system has been created to collect data for the beam accounting and present the data over the web and to the operator consoles. Many of the instruments are PC-based and a way to manage their instrument configuration files through the Oracle database has been implemented. A new version for the wire scanner software has been developed and is under test. This paper also includes data from the various instruments. |
|
Slides
|
|
|
||
THPMN077 | Improved 2mrad crossing angle layout for the International Linear Collider | extraction, quadrupole, optics, luminosity | 2883 | |||||
|
The 2mrad interaction region and extraction line provide several machine and physics advantages, but also involves a number of technological challenges. In this paper a minimal extraction line without beam energy and polarization diagnostics is presented, which considerably simplifies the design and reduces costs. The optimization of the interaction region sextupoles, using current and proposed technologies, and an estimation of photon backscattering from spent beam particle losses are described. Overall performance is evaluated and compared with previous designs. The upgrade to 1 TeV and the possibility of including diagnostics are considered.
|
|
|
|||||
THPMN100 | Suppression of Muon Backgrounds Generated in the ILC Beam Delivery System | background, positron, simulation, electron | 2945 | |||||
|
Particle fluxes generated from the interactions of beam halo with the collimators in the ILC Beam Delivery System (BDS) can exceed tolerable levels for the collider detectors and create hostile radiation environment in the interaction region. Thorough analysis of the BDS model, beam loss patterns, driving geometry factors and physics processes along with verification of the simulation codes were performed for the current ILC BDS layout with 250-GeV electron and positron beams crossing at 14 mrad with a push-pull detector option. Muon flux reduction by distributed toroids (doughnut-type spoilers) in comparison with magnetic iron walls filling the BDS tunnel are calculated and analysed in great detail. Shielding conditions which allow occupancy of the interaction region while the full power beam is on the linac tuneup dump are also studied.
|
|
|
|||||
THPAN022 | Conceptual Studies of the EUROTRANS Front-End | rfq, linac, emittance, acceleration | 3274 | |||||
|
Funding: Work supported by European Commission (contract number: FI6W-CT-2004-516520) |
EUROTRANS (EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in an Accelerator Driven System) is calling for an efficient high-current CW front-end accelerator system. A combination of RFQ, normal conducting CH- (Crossbar H-mode) and super-conducting CH-DTL which aims to work at 352MHz and accelerate a 30mA proton beam to 17MeV has been studied as a promising candidate. The preliminary conceptual study results are reported with respect to beam dynamics design. |
|
|||||
THPAN040 | Study of Halo Formation in JPARC-MR | emittance, simulation, acceleration, space-charge | 3318 | |||||
|
JPARC is a high intensity proton facility which is constructing as a joint project JAERI-KEK in Japan. JPARC equips two proton ring accelerators, Rapid Cycle Synchrotron (RCS) and Main Ring (MR). We discuss the space charge effect of MR in this paper. The proton beam with the population of 4.15·1013 x 8 bunches is accelerated from 3 GeV to 50 GeV and extracted with 0.5 Hz in MR. Beam loss during the acceleration is caused by an incoherent emittance growth due to the space charge force. We discuss the emittance growth and halo formation using a computer simulation based on the particle in cell method.
|
|
|
|||||
THPAN065 | Beam Loss Map Simulations and Measurements in the CERN PS | simulation, septum, collimation, extraction | 3372 | |||||
|
Numerical tools providing detailed beam loss maps, recently developed for the design of the LHC collimation system, were adapted to the CERN Proton Synchrotron in order to reproduce the observed beam loss patterns. Using a MADX optics sequence model, these tools are able to track a large number of particles with Sixtrack and interact with a realistic aperture model to simulate particle losses all around the ring. The modeled loss maps were finally compared with beam loss measurements at several energies and for a variety of beams accelerated in the synchrotron.
|
|
|
|||||
THPAN098 | Touschek Effect Calculation and Its Application to a Transport Line | scattering, emittance, storage-ring, coupling | 3453 | |||||
|
Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. |
The Touschek effect is a major concern for lepton storage rings of low emittance (i.e., high bunch density) and low or moderate beam energy, such as third-generation synchrotron light sources. Piwinski's formula, which includes beam shape variation along the beamline and which is suitable for any beam energy, has been incorporated into a program that interoperates with elegant for use in lifetime calculations. The difference between using Piwinski's method and other simplified methods for the APS is shown in this paper. Furthermore, because of the generality of this formula, we also applied it to transport lines to predict beam loss rates and beam loss locations for the first time. An example related to a possible energy recovery linac upgrade of the APS (APS-ERL) is also given in this paper. |
|
|||||
THPAN114 | Simulations of Beam-wire Experiments at RHIC | dynamic-aperture, simulation, resonance, injection | 3492 | |||||
|
We report on simulations of beam-beam experiments performed at RHIC in 2006. These experiments were designed to observe the influence of a single parasitic interaction on beam quality. Several observables such as tunes, emittances and losses were simulated with the weak-strong code BBSIM. These simulation results are compared to observed values. Simulations of the wire compensation experiment to be carried out in RHIC are also shown.
|
|
|
|||||
THPAS013 | Electron Cloud Simulations to Cold PSR Proton Bunches | electron, proton, simulation, vacuum | 3540 | |||||
|
Funding: SNS through UT-Battelle, LLC, DE-AC05-00OR22725 for the U. S. DOE. Indiana University Bloomington, PHY-0552389 for NSF and DE-FG02-92ER40747 for DOE. LANL, W-7405-ENG-36. |
We present ORBIT code simulations to examine the sensitivity of electron cloud properties to different proton beam profiles and to reproduce experimental results from the proton storage ring at Los Alamos National Laboratory. We study the recovery of electron clouds after sweeping, and also the characteristics of two types of electrons signals (prompt and swept) as functions of beam charge. The prompt signal means the peak height of electron sweeper signal before high voltage pulse applied on its electrode and after beam accumulation, and the swept signal means the spike height of electron sweeper signal during the high voltage pulse. To concentrate on the electron cloud dynamics, we use a cold proton bunch to generate primary electrons and electromagnetic field for electron dynamics. However, the protons receive no feedback from the electron cloud. Our simulations indicate that the proton loss rate in the field-free straight section might be an exponential function of proton beam charge and may also be lower than the averaged proton loss rate in a whole ring. |
|
|||||
THPAS028 | Warm-Fluid Equilibrium Theory of an Intense Charged-Particle Beam Propagating through a Periodic Solenodal Focusing Channel | focusing, emittance, electron, plasma | 3558 | |||||
|
Funding: Research supported by US Department of Energy, Office of High-Energy Physics, Grant No. DE-FG02-95ER40919 and Air Force Office of Scientific Research, Grant No. FA9550-06-1-0269. |
A warm-fluid theory of a thermal equilibrium for a rotating charged particle beam in a periodic solenoidal focusing magnetic field is presented. The warm-fluid equilibrium equations are solved in the paraxial approximation. It is shown that the flow velocity for the thermal equilibrium corresponds to periodic rigid rotation and radial pulsation. The equation of state for the thermal equilibrium is adiabatic. The beam envelope equation and self-consistent Poisson's equation are derived. The numerical algorithm for solving self-consistent Poisson's equation is discussed. Density profiles are calculated numerically for high-intensity beams. Temperature effects in such beams are investigated, and the validity of the warm-fluid theory is discussed. Examples of electron and ion beams are presented for space-charge-dominated beam and high energy density physics (HEDP) research. |
|
|||||
THPAS051 | The RIAPMTQ/IMPACT Beam-Dynamics Simulation Package | linac, simulation, heavy-ion, rfq | 3606 | |||||
|
Funding: This work is supported by the U. S. Department of Energy, DOE contract number:W-7405-ENG-36 |
RIAPMTQ/IMPACT is a pair of linked beam-dynamics simulation codes that have been developed for end-to-end computer simulations of multiple-charge state heavy-ion linacs for future exotic-beam facilities. The simulations can extend from the low-energy beam transport after the ECR source to the end of the linac. The work has been performed by a collaboration including LANL, LBNL, ANL, MSU, and TechSource. The code RIAPMTQ simulates the linac front end including the LEBT, RFQ, and MEBT, and the code IMPACT simulates the main superconducting linac. The codes have been benchmarked for rms beam properties against previously existing codes at ANL and MSU. The codes allow high-statistics runs on parallel supercomputing platforms, such as NERSC at LBNL, as well as runs on desktop PC computers for low-statistics design work. We will show results from 10-million-particle simulations of RIA designs by ANL and MSU, carried out at the NERSC facility. These simulation codes will allow evaluations of candidate designs with respect to beam-dynamics performance including beam losses. |
|
|||||
THPAS076 | ORBIT Injection Dump Simulations of the H0 and H- Beams | injection, septum, dipole, scattering | 3657 | |||||
|
Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. |
Simulations of the transport of H0 and H- beams to the SNS ring injection dump are carried out using the ORBIT code. During commissioning and early operations, beam losses in this region have been the highest in the accelerator and presented the most obvious hurdle to cross in achieving high intensity operation. Two tracking models are employed: |
|
|||||
THPAS078 | 3D Modeling of SNS Ring Injection Dump Beam Line | injection, dipole, simulation, emittance | 3660 | |||||
|
Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. |
The SNS ring injection dump beam line has been suffering high beam losses since its commissioning. In order to understand the mechanisms of the beam losses, we have built a 3D simulation model consisting of three injection chicane dipoles and one injection dump septum. The magnetic field distributions and the 3D particle trajectories in the model are obtained. The study has clearly shown two design problems causing beam losses in the injection dump beam line. This paper reports our simulation model, particle trajectory calculations, beam losses due to small vertical aperture of the injection dump septum and inadequate focusing down stream. The remedy of the beam losses is also discussed. |
|
|||||
FRPMN033 | Adiabatic Damping During Acceleration in the Induction Synchrotron | acceleration, synchrotron, damping, induction | 4009 | |||||
|
Damping in a bunch length during the acceleration in the induction synchrotron experiment *, where a single proton bunch injected from the KEK 500 MeV Booster and trapped by the barrier voltages is accelerated to 6 GeV, has been observed. Such a damping may be regarded as the adiabatic damping, as found in a conventional RF synchrotron. A technique to analytically deal with this phenomenon is well established in the RF synchrotron. A WKB solution is employed for the small amplitude synchrotron oscillation. However, a simple WKB approach is not available for the present barrier bucket acceleration, because longitudinal motion always depends on the oscillation amplitude. This paper discusses a novel technique capable of quantitatively predicting the adiabatic phenomenon which has been newly developed. The analytical results were worked out and verified using simulations for ideal conditions. Theoretical approach tells us that a bunch length in the barrier bucket acceleration never continues to shrink but achieves a constant value corresponding to the time duration between the barrier voltage pulses.
|
* K. Takayama et al., "Experimental Result of the Induction Synchrotron", appear in Phys. Rev. Lett. (2007) and in this conference. |
|
|||||
FRPMN060 | Beam Loss Simulation of SNS LINAC | linac, simulation, radiation, monitoring | 4138 | |||||
|
Funding: SNS is managed by UT-Batelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy. |
We are developing a sophisticated system of beam loss pattern evaluation and residual radiation estimation. We have installed a number of Neutron Detectors and Ionization Chambers along LINAC. In this paper we present our implementation and simulation of the losses by inserting Faraday Cups, using Beam Stops and running Wire Scanners at different energies. The measured losses are simulated by 3-D transport codes (GEANT4, SHIELD, MCNPX). We compare two different sets of Beam Loss Monitors: Ionization Chambers (detecting X-ray and gamma radiation) and Photo-Multiplier Tubes with a neutron converter (detecting neutrons) and outline that such a combination is a better way to measure beam losses than relying on detectors of one type. We interpret the loss signal in terms of beam current lost in the SNS LINAC with accurate longitudinal loss distribution and plan to automate beam steering according to loss monitors readings by using vast Loss Pattern Database developed by simulating different loss scenarios with the transport codes. |
|
|||||
FRPMN071 | The LHC Beam Loss Measurement System | radiation, quadrupole, vacuum, simulation | 4192 | |||||
|
One of the most important elements for the protection of CERN's Large Hadron Collider (LHC) is its beam loss monitoring system. It aims to prevent the super conducting magnets from quenching and to protect the machine components from damages, as a result of critical beam losses. This contribution reviews the design requirements: a high reliability to insure a safe protection and a high availability, a high dynamic range required by the beam dump trigger generation and beam tuning and finally a high radiation tolerance to be able to install the front-end electronics in the LHC tunnel. Examples of the reliability studies using the reliability ISOGRAPH fault tree software package are shown to explain the particular design. Measurement results from the LHC beam loss system installed at HERA (DESY) and at the SPS (CERN) are given to demonstrate its functionality. The detector design of the ionisation chambers and the secondary emission monitors are summarized and measurements with high and low intensity beams as well as with continuous and pulsed proton, muon and neutron beams are discussed.
|
|
|
|||||
FRPMN089 | Facility Wide Real-Time Beam Loss Monitoring & Control using FPGA Technology | controls, synchrotron, diagnostics, target | 4282 | |||||
|
The ISIS facility based at Rutherford Appleton Laboratory, Chilton, Didcot, UK is currently the worlds brightest pulsed Neutron Spallation Source producing a beam to target power of 160kW. It is critical during machine operation to reduce activation of machine components by monitoring and controlling beam losses. Beam loss detection is provided using a total of 82 gas ionisation chambers distributed throughout the Injector, 800MeV Synchrotron, the Extracted Proton Beamline and the new Extracted Proton Beamline for TS2. This paper outlines the design of a new Beam Loss Display and Beam Trip Unit which uses a high speed FPGA design to provide real time monitoring, beam loss data logging and increased beam trip reaction time.
|
|
|
|||||
FRPMS002 | Parametric Modeling of Electron Beam Loss in Synchrotron Light Sources | electron, synchrotron, scattering, simulation | 3853 | |||||
|
Funding: DOE Phase II STTR: DE-FG02-04ER86225 |
Synchrotron light is used for a wide variety of scientific disciplines ranging from physical chemistry to molecular biology and industrial applications. As the electron beam circulates, random single-particle collisional processes lead to decay of the beam current in time. We report a simulation study in which a combined neural network (NN) and first-principles (FP) model is used to capture the decay in beam current due to Touschek, Bremsstralung, and Coulomb effects. The FP block in the combined model is a parametric description of the beam current decay where model parameters vary as a function of beam operating conditions (e.g. vertical scraper position, RF voltage, number of the bunches, and total beam current). The NN block provides the parameters of the FP model and is trained (through constrained nonlinear optimization) to capture the variation in model parameters as operating condition of the beam changes. Simulation results will be presented to demonstrate that the proposed combined framework accurately models beam decay as well as variation to model parameters without direct access to parameter values in the model. |
|
|||||
FRPMS051 | Proposed Beam Diagnostics Instrumentation for the LANSCE Refurbishment Project | linac, instrumentation, simulation, bunching | 4099 | |||||
|
Funding: *Work supported by the U. S. Department of Energy. |
Presently, the Los Alamos National Laboratory is in the process of planning a refurbishment of various sub-systems within its Los Alamos Neutron Science Center accelerator facility. A part of this LANSCE facility refurbishment will include some replacement of and improvement to existing older beam diagnostics instrumentation. While plans are still being discussed, some instrumentation that is under improvement or replacement consideration are beam phase and position measurements within the 805-MHz side-coupled cavity linac, slower wire profile measurements, typically known as wire scanners, and possibly additional installation of fast ionization-chamber loss monitors. This paper will briefly describe the requirements for these beam measurements, what we have done thus far to answer these requirements, and some of the technical issues related to the implementation of these instrumentation. |
|
|||||
FRPMS064 | Electron Beam Lifeime in SPEAR3: Measurement and Simulation | optics, scattering, electron, coupling | 4153 | |||||
|
Funding: Work supported by US Department of Energy Contract DE-AC03-76SF00515 and Office of Basic Energy Sciences, Division of Chemical Sciences. |
The primary contributing factors to electron beam lifetime in a storage ring are elastic and inelastic gas scattering, and intrabeam scattering. In order to further quantify the relative contributions of each mechanism, a series of measurements using vertical scraper position and rf-voltage sweeps were performed in SPEAR3 with fill patterns featuring different single-bunch and total beam currents. In parallel, an analytic beam-lifetime simulator was developed taking scattering cross-sections, rf-bucket height and bunch lengthening effects into account. In this paper, we compare measured results with the simulated results in an effort to develop a comprehensive model for electron beam lifetime under a variety of operating conditions. |
|
|||||
FRPMS081 | Geometric Effects on Electron Cloud | electron, vacuum, simulation, positron | 4243 | |||||
|
The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit the machine performances by inducing beam instabilities, beam emittance increase, beam loss, vacuum pressure increases and increased heat load on the vacuum chamber wall. The electron multipacting is a kind of geometric resonance phenomenon and thus is sensitive to the geometric parameters such as the aperture of the beam pipe, beam shape and beam bunch fill pattern, etc. This paper discusses the geometric effects on the electron cloud build-up in a beam chamber and examples are given for different beams and accelerators.
|
|
|
|||||
FRPMS116 | Diagnostics of BNL ERL | diagnostics, gun, injection, emittance | 4387 | |||||
|
Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886 |
The ERL Prototype project is currently under development at the Brookhaven National Laboratory. The ERL is expected to demonstrate energy recovery of high-intensity beams with a current of up to a few hundred milliamps, while preserving the emittance of bunches with a charge of a few nanocoulombs produced by a high-current SRF gun. To successfully accomplish this task the machine will include beam diagnostics that will be used for accurate characterization of the three dimensional beam phase space at the injection and recirculation energies, transverse and longitudinal beam matching, orbit alignment, beam current measurement, and machine protection. This paper outlines requirements on the ERL diagnostics and describes its setup and modes of operation. |
|