A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V    

impedance

    
Paper Title Other Keywords Page
MO302 Development of Room Temperature and Superconducting CH-Structures linac, proton, ion, acceleration 28
 
  • H. Podlech
    IAP, Frankfurt-am-Main
  H-mode cavities (IH-DTL, IH-RFQ, 4-Vane-RFQ) have been developed and operated successfully during the last decades for a large variety of applications in ion acceleration. At the IAP Frankfurt a new type of H-mode cavity, the CH-structure is under development. This multi cell drift tube cavity is operated in the H21 mode. Due to its mechanical stability, room temperature as well as superconducting cavities can be realized. The CH-structure is an excellent candidate for high power ion accelerators in the energy range from 5 to 100 MeV. The design status of the GSI 70 MeV, 70 mA proton injector DTL consisting of room temperature CH-structures is reported. Superconducting CH-structures can be used especially for cw operated linacs as designed for XADS, IFMIF or in nuclear physics projects. By using the KONUS beam dynamics and performing the particle simulations with the LORASR code it is possible to realize multi cell cavities without internal focusing lenses. A superconducting 352 MHz CH-structure (β=0.1) with 19 gaps has been built. We present the results of the first tests with this new cavity. The status of a PC version of the LORASR code will be reported.  
Transparencies
 
MOP01 Beam Intensity Adjustment in the RIA Driver Linac target, ion, linac, focusing 33
 
  • P.N. Ostroumov, J.A. Nolen, I. Sharamentov
    ANL/Phys, Argonne, Illinois
  • A.V. Novikov-Borodin
    RAS/INR, Moscow
  The Rare Isotope Accelerator Facility currently being designed in the U.S. will use both heavy ion and light ion beams to produce radionuclides via the fragmentation and spallation reactions, respectively. Driver beam power of up to 400 kW will be available so that beam sharing between target stations is a viable option to increase the number of simultaneous users. Using a combination of rf-sweepers and DC magnets the driver beams can be delivered to up to four targets simultaneously. With simultaneous beam delivery to more than one target independent adjustment of the relative beam intensities is essential. To enable such intensity adjustment we propose to use a fast chopper in the Medium Energy Beam Transport (MEBT) section. Several options of fast chopper design are discussed. The MEBT beam optics is being designed to accommodate and match the chopper technical specifications. Possible solutions and performance with the fast chopper are proposed.  
 
MOP20 Design of the R.T. CH-Cavity and Perspectives for a New GSI Proton Linac simulation, linac, proton, resonance 81
 
  • Z. Li
    IMP, Lanzhou
  • W. Barth, K. Dermati, L. Groening
    GSI, Darmstadt
  • G. Clemente, H. Podlech, U. Ratzinger, R. Tiede
    IAP, Frankfurt-am-Main
  The CH-Structure has been studied at the IAP Frankfurt and at GSI for several years. Compared with the IH structure (H110-mode), the CH structure (H210-mode) can work at higher frequency (700 MHz) and can accelerate ions to higher energy (up to 150 AMeV). Detailed Microwave Studio (MWS) simulations were performed for this structure. Since a multi-gap cavity can be approximated as a quasi-periodic structure, it is possible to analyze one βλ/2-cell at an energy corresponding to the cavity center. Additionally, a reduced copper conductivity of 85% was assumed. Geometry variations with respect to rf frequency and shunt impedance can be performed rapidly by that method in the first stage of optimization. Effective shunt impedances from 100 MΩ/m down to 25 MΩ/m were obtained for the energy range from 5 AMeV to 150 AMeV by this method. The rf frequency was 350 MHz up to 70 MeV and 700 MHz above. A systematic analysis of the influence of the cell number in long CH cavities on the effective shunt impedance is presented. The possibility to apply this structure to a 70 mA, 70 MeV, 352 MHz proton linac for GSI is discussed.  
 
MOP24 Using a Solid State Switch for a 60kV Bouncer to Control Energy Spread during the Beam Pulse* linac, coupling, synchrotron, power-supply 87
 
  • L. Donley, J.C. Dooling, G.E. McMichael, V. F. Stipp
    ANL, Argonne, Illinois
  The beam injected into the IPNS Linac is from a column utilizing a Cockcroft-Walton voltage source. The accelerating column consists of a single high gradient gap. To lessen the likelihood of gap voltage breakdown, we pulse (“bounce”) the column voltage up during the beam pulse allowing the column DC voltage to be lower. The accelerating voltage is supplied through a 5 MΩ resistor and has only small capacitance to hold the voltage constant during the beam pulse. A capacitor is connected between the high voltage end of the column and the bouncer pulse generator. The bouncer pulse increases the column voltage to the proper level just microseconds before the beam pulse. A slope on the top of the bouncer pulse allows for correction to be added, compensating for the voltage droop that results from beam loading. The bouncer that has served this purpose in the past utilized a tube amplifier. In searching for a suitable replacement system it was decided that the system should be able to deliver a 60 kV pulse and the slope on the top of the pulse could be controlled by an RC rise. A solid state switch was purchased for this application. Switch protection and other design decisions will be discussed.  
 
MOP28 A Study of Higher-Band Dipole Wakefields in X-Band Accelerating Structures for the G/NLC dipole, emittance, linac, simulation 99
 
  • R.M. Jones
    SLAC/ARDA, Menlo Park, California
  The X-band linacs for the GLC/NLC (Global Linear Collider/Next Linear Collider) have evolved from the DDS (Damped Detuned Structure) series [1,2]. The present series of accelerating structures are each 60 cm in length and incorporate both damping and detuning of the dipole modes which comprise the wakefield. In order to adequately damp the wakefield the dipole frequencies of adjacent structures are interleaved. The properties of the first dipole band have been extensively studied. However, limited analysis has been done on the higher order dipole bands. Here, we calculate the contribution of the higher order bands of the interleaved structures to the wakefield using a mode matching computer code [3]. Beam dynamics issues are also studied by tracking the beam through the complete linac using the particle beam tracking code LIAR [4].

[1] R.M Jones et al,1996,Proc. EPAC96 (also SLAC-PUB-7187) [2] J.W. Wang et al, 2000, Proc. LINAC2000 (also SLAC-PUB-8583) [3] V.A. Dolgashev, Ph.D. thesis, Budker INP, Novosibirsk, 2002.[4] R. Assman et al, LIAR, SLAC-PUB AP-103

 
 
MOP63 Numerical Calculation of Coupling Impedances in Kicker Modules for Non-Relativistic Particle Beams simulation, coupling, kicker, synchrotron 162
 
  • B. Doliwa, T. Weiland
    TU Darmstadt, Darmstadt
  In the context of heavy-ion synchrotrons, coupling impedances in ferrite-loaded structures (e.g. fast kicker modules) are known to have a significant influence on beam stability. While bench measurements are feasible today, it is desirable to have the coupling impedances in hands already during the design process of the respective components. To achieve this goal, as a first step, we have carried out numerical analyses of simple ferrite-containing test systems within the framework of the Finite Integration Technique[1]. This amounts to solving the full set of Maxwell's equations in frequency domain, the particle beam being represented by an appropriate excitation current. With the resulting electromagnetic fields, one may then readily compute the corresponding coupling impedances. Despite the complicated material properties of ferrites, our results show that their numerical treatment is possible, thus opening up a way to determine a crucial parameter of kicker devices before construction.

[1] Weiland, T., Electronics and Communication (AEÜ), Vol. 31 (1977), p. 116.

 
 
MOP64 Wire Measurement of Impedance of an X-Band Accelerating Structure dipole, linear-collider, collider, resonance 165
 
  • N. Baboi
    DESY, Hamburg
  • G. Bowden, V.A. Dolgashev, R.M. Jones, J. Lewandowski, S.G. Tantawi, J. Wang
    SLAC/ARDA, Menlo Park, California
  Several tens of thousands of accelerator structures will be needed for the next generation of linear collders known as the GLC/NLC (Global Linear Collider/Next Linear Collider). To prevent the beam being driven into a disruptive BBU (Beam Break Up) mode or at the very least, the emittance being signifcantly diluted, it is important to damp down the wakefield left by driving bunches to a manageable level. Manufacturing errors and errors in design need to be measurable and compared with predictions. We develop a circuit model of wire-loaded X-band accelerator structures. This enables the wakefield (the inverse transform of the beam impedance) to be readily computed and compared with the wire measurement. We apply this circuit model to the latest series of accelerating for the GLC/NLC. This circuit model is based upon the single-cell model developed in [1] extended here to complete, multi-cell structures.

[1] R.M. Jones et al, 2003, Proc. PAC2003 (also SLAC-PUB 9871)

 
 
MOP84 First Cryogenic Tests with JLab's new Upgrade Cavities* damping, coupling, pick-up, higher-order-mode 216
 
  • P. Kneisel, G. Ciovati, G. Myneni, G. Wu
    Jefferson Lab, Newport News, Virginia
  • J. Halbritter
    FZ Karlsruhe, Karlsruhe
  • J. Sekutowicz
    DESY, Hamburg
  For the upgrade of CEBAF to 12 GeV two types of 7-cell cavities have been developed: the High Gradient type (HG) has been optimized with respect to the ratio of Epeak/Eacc and for the Low Loss (LL) type the shunt impedance has been maximized. Each cavity type features four DESY type coaxial HOM couplers and a waveguide input coupler. Design goals for these cavities have been set to Eacc = 20 MV/m with a Q-value at 2.05 K of Q0 = 8·109. A niobium prototype of each cavity has been fabricated at JLab and in a first test the HG cavity has been evaluated at cryogenic temperatures after appropriate buffered chemical polishing. Data for Q(E) were taken at several temperatures after R(T) was measured during initial pump down. In addition the pressure sensitivity as well as the Lorentz force detuning were evaluated. The damping of approximately 20 High Order Modes was measured to verify the room temperature data. Measurements on the LL prototype are in progress. We present in this contribution a summary of measured results of tests we performed on the new proposed shapes of the upgrade cavities.  
 
MOP89 A Wire Position Monitor System for the ISAC-II Cryomodule Components Alignment alignment, linac, vacuum, acceleration 231
 
  • B. Rawnsley, Y. Bylinskii, G. Dutto, K. Fong, R.E. Laxdal, T. Ries
    TRIUMF, Vancouver
  • D. Giove
    INFN/LASA, Segrate (MI)
  TRIUMF is developing ISAC-II, a superconducting (SC) linac. It will comprise 9 cryomodules with a total of 48 niobium cavities and 12 SC solenoids. They must remain aligned at liquid He temperatures: cavities to ±400 μm and solenoids to ±200 μm after a vertical contraction of ~4 mm. A wire position monitor (WPM) system based on a TESLA design has been developed, built, and tested with a prototype cryomodule. The system is based on the measurement of signals induced in pickups by a 215 MHz signal carried by a wire through the WPMs. The wire is stretched between the warm tank walls parallel to the beam axis providing a position reference. The sensors, one per cavity and two per solenoid, are attached to the cold elements to monitor their motion during pre-alignment, pumping and cool down. A WPM consists of four 50 Ω striplines spaced 90° apart. A GaAs multiplexer scans the WPMs and a Bergoz card converts the RF signals to DC X and Y voltages. National Instruments I/O cards read the DC signals. The data acquisition is based on a PC running LabVIEW. System accuracy is ~7 μm. The paper describes system design, WPM calibration and test results.  
 
MOP92 Simulation of the RF Coupler for TRIUMF ISAC-II Superconducting Quarter Wave Resonators coupling, simulation, cryogenics, acceleration 234
 
  • V. Zvyagintsev
    TRIUMF, Vancouver
  The inductive RF coupler for the TRIUMF ISAC-II 106 MHz superconducting accelerating quarter wave resonators was used as a basis for the simulation model of stationary transmission processes of RF power and thermal fluxes. Electromagnetic simulation of the coupler was done with ANSOFT HFSS code. Transmission line theory was used for electromagnetic wave calculations along the drive line to the Coupler. An analogy between electric and thermal processes allows the thermal calculations to be expressed in terms of electrical circuits. The data obtained from the simulation are compared to measured values on the RF coupler.  
 
TUP13 Test and First Experiments with the new REX-ISOLDE 200 MHz IH-Structure injection, linac, acceleration, ion 318
 
  • T. Sieber
    CERN, Geneva
  • D. Habs, O.K. Kester
    LMU, Garching
  For the REX-ISOLDE accelerator, a new accelerating structure is at the moment installed and tested. It willl raise the final energy from the present 2.3 MeV/u to 3 MeV/u. The aim is to increase the mass range of the nuclei available for nuclear spectroscopy from mass 40 to mass 80. The new accelerator component is a 0.5 m IH-structure, working at the double REX frequency of 202.56 MHz. It was originally developed as a 7-Gap resonator for the MAFF* project and later adapted to the requirements at REX by changing from a 7-Gap to a 9-Gap resonator to match the lower injection energy. The poster presents the design of the resonator and the results of the rf-tests, commissioning and first operation during the 2004 running period.

*H. Bongers et al., The IH-7-Gap Resonators of the Munich Accelerator for Fission Fragments (MAFF) Linac, proceedings of the PAC2001, Chicago, June 2001, p.3945

 
 
TUP54 Resistive-Wall Wake Effect in the Beam Delivery System single-bunch, focusing, vacuum, linear-collider 393
 
  • J. Wu
    SLAC, Menlo Park, California
  • J. R. Delayen
    Jefferson Lab, Newport News, Virginia
  • T.O. Raubenheimer
    SLAC/NLC, Menlo Park, California
  • J.-M. Wang
    BNL/NSLS, Upton, Long Island, New York
  The resistive wall instability is investigated in the context of the final beam delivery system of linear colliders. The emittance growth is calculated analytically and compared against the results of full numerical simulations. Criteria for the design of final beam delivery systems are developed.  
 
TUP89 Static Absolute Force Measurement for Preloaded Piezoelements Used for Active Lorentz Force Detuning System resonance, linac, vacuum, linear-collider 486
 
  • S. P. Sekalski, A. Napieralski, S. P. Sekalski
    TUL, Lodz
  • A. Bosotti
    INFN/LASA, Segrate (MI)
  • M. Fouaidy
    IPN, Orsay
  • L. Lilje, S. Simrock
    DESY, Hamburg
  • R. Paparella, P.F. Puricelli
    INFN Milano, Milano
  To reach high gradients in pulsed operation of superconducting (SC) cavities an active Lorentz force detuning compensation system is needed. For this system a piezoelement can be used as an actuator (other option is a magnetostrictive device). To guarantee the demanded lifetime of the active element, the proper preload force adjustment is necessary. To determine this parameter an absolute force sensor is needed which will be able to operate at cryogenic temperatures. Currently, there is no calibrated commercial available sensor, which will be able to measure the static force in such an environment. The authors propose to use a discovered phenomenon to estimate the preload force applied to the piezoelement. The principle of the proposed solution based on a shape of impedance curve, which changes with the value of applied force. Especially, the position of resonances are monitored. No need of specialized force sensor and measurement in-situ are additional advantages of proposed method.  
 
TH202 Review of Fast Beam Chopping 578
 
  • F. Caspers
    CERN, Geneva
  Several types of fast beam chopping systems in use or under construction are presented. Emphasis is given to their specific technologies and in particular their various fields of application. Important parameters are duty cycle, rise-and falltime, ringing and overall bandwidth. Certain systems have very specific driver concepts since the generation of multi kW peak power with nanosecond transients, high repetition rate and very good pulse shape fidelity is not a trivial issue. The design of driver amplifier and actual chopper structure are not always mutually independent and thus some of the limiting aspects will be discussed.  
Transparencies
 
TH301 Intermediate-Velocity Superconducting Accelerating Structures linac, ion, proton, acceleration 589
 
  • J. R. Delayen
    Jefferson Lab, Newport News, Virginia
  In the last decade, one of the most active areas in the application of the superconducting (SC) rf technology has been for the acceleration of ions to medium energies (~1 GeV/amu). One such accelerator is under construction in the US while others are being proposed in the US, Japan, and Europe. These new facilities require SC accelerating structures operating in a velocity region that has until recently been unexplored, and new types of structures optimized for the velocity range from ~0.2 to ~0.8 c have been developed. We will review the properties of these intermediate-velocity structures, the status of their development, as well as present an overview of the medium-energy superconducting ion accelerator designs being developed world-wide.  
Transparencies
 
THP17 Progress in the Development of the TOP Linac linac, proton, quadrupole, booster 633
 
  • L. Picardi, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • S. Frullani
    ISS, Rome
  The TOP Linac (Oncological Therapy with Protons), under development by ENEA and ISS is a sequence of three pulsed (5 msec, 300 Hz) linear accelerators: a 7 MeV, 425 MHz RFQ+DTL (AccSys Model PL-7), a 7–65 MeV, 2998 MHz Side Coupled Drift Tube Linac (SCDTL) and a 65–200 MeV, variable energy 2998 MHz Side Coupled Linac (SCL). The first SCDTL module is composed by 11 DTL tanks coupled by 10 side cavities. The tanks has modified to overcome vacuum leakage that occurred during brazing, and now the module has been completed, and is ready to be tested with protons. The 7 MeV injector has been recently installed in the ENEA Frascati laboratories for preliminary test, before being transferred to the main Oncologycal Hospital in Rome, Istituto Regina Elena.  
Transparencies
 
THP31 A Four-Cell Periodically HOM-Damped RF Cavity for High Current Accelerators damping, coupling, acceleration, dipole 669
 
  • G. Wu, R.A. Rimmer, H. Wang
    Jefferson Lab, Newport News, Virginia
  • J. Sekutowicz
    DESY, Hamburg
  • A. Sun
    ORNL/SNS, Oak Ridge, Tennessee
  A periodically Higher Order Mode (HOM) damped RF cavity is a weakly coupled multi-cell RF cavity with HOM couplers periodically mounted between the cells. It was studied as an alternative RF structure between the single cell cavity and superstructure cavity in high beam current application requiring strong damping of the HOMs. The acceleration mode in this design is the lowest frequency mode (Zero Mode) in the pass band, in contrast to the traditional “π” acceleration mode. The acceleration mode of a four-cell Zero Mode cavity has been studied along with the monopole and dipole HOMs. Some HOMs have been modeled in HFSS with waveguide HOM couplers, which were subsequently verified by MAFIA time domain analysis. To understand the tuning challenge for the weakly coupled cavity, ANSYS and SUPERFISH codes were used to simulate the cavity frequency sensitivity and field flatness change within proper tuning range, which will influence the design of the tuner structure. This paper presents this novel accelerating structure that may be used for variety of accelerator applications.  
 
THP33 Progress toward NLC/GLC Prototype Accelerator Structures dipole, simulation, pick-up, linac 675
 
  • J. Wang, G. Bowden, V.A. Dolgashev, R.M. Jones, J. Lewandowski, C.D. Nantista, S.G. Tantawi
    SLAC/ARDA, Menlo Park, California
  • C. Adolphsen, D.L. Burke, J.Q. Chan, J. Cornuelle, S. Döbert
    SLAC/NLC, Menlo Park, California
  • T. Arkan, C. Boffo, H. Carter, N. Khabiboulline
    FNAL, Batavia, Illinois
  • N. Baboi
    DESY, Hamburg
  • D. Finley, I. Gonin, S. Mishra, G. Romanov, N. Solyak
    Fermilab, Batavia, Illinois
  • Y. Higashi, T. Higo, T. Kumi, Y. Morozumi, N. Toge, K. Ueno
    KEK, Ibaraki
  • Z. Li, R. Miller, C. Pearson, R.D. Ruth, P.B. Wilson, L. Xiao
    SLAC, Menlo Park, California
  The accelerator structure groups for NLC (Next Linear Collider) and GLC (Global Linear Colliders) have successfully collaborated on the research and development of a major series of advanced accelerator structures based on room-temperature technology at X-band frequency. The progress in design, simulation, microwave measurement and high gradient tests are summarized in this paper. The recent effort in design and fabrication of the accelerator structure prototype for the main linac is presented in detail including HOM (High Order Mode) suppression and couplers, fundamental mode couplers, optimized accelerator cavities as well as plans for future structures. We emphasize techniques to reduce the field on the surface of the copper structures (in order to achieve high accelerating gradients), limit the dipole wakefields (to relax alignment tolerance and prevent a beam break up instability) and improve shunt impedance (to reduce the RF power required).  
 
THP51 Tuning of External Q And Phase for The Cavities of A Superconducting Linear Accelerator scattering, linac, resonance, coupling 724
 
  • V.V. Katalev, S. Choroba
    DESY, Hamburg
  The RF power required for a certain gradient of a superconducting cavity depends on the beam current and coupling between the cavity and waveguide. The coupling with the cavity may be changed by variation of Qext. Different devices can be used to adjust Qext or phase. In this paper three stub and E-H tuners are compared and their usability for the RF power distribution system for the superconducting accelerator of the European Xray laser and the TESLA linear collider is considered. The tuners were analyzed by using the scattering matrix. Advantages and limitations of the devices are presented.  
 
THP53 Quasi-Optical Components for Future Linear Colliders radiation, linac, alignment, linear-collider 730
 
  • S. Kuzikov, G. G. Denisov, M. Yu. Shmelyov
    IAP, Nizhniy Novgorod
  • J.L. Hirshfield
    Omega-P, Inc., New Haven, Connecticut
  This paper presents a concept of the quasi-optical RF system for future Ka-band electron-positron linear collider. According to this concept two RF feeding systems are considered: a Delay Line Distribution System (DLDS) and a pulse compressor based on the multi-mirror traveling-wave resonator. The DLDS is based on oversized waveguides. In such waveguides the so-called image multiplication phenomena are used for power launching, extracting, combining, and splitting of waves. Recent low power tests of mode launchers and other DLDS components are discussed. The 34 GHz pulse compressors, based on three and four-mirror resonators, are considered. The tests of the prototypes at a low power level under different modulation methods are discussed. The simulations and tests of mode converters, miter bends, RF loads, and other components, to be necessary for both compression systems, also are resulted.  
 
THP54 Moscow Meson Factory DTL RF System Upgrade rfq, vacuum, coupling, dipole 733
 
  • A.I. Kvasha
    RAS/INR, Moscow
  The last paper devoted to description of the first part (DTL) RF system of Moscow Meson Factory upgrade was published in the Proceedings of PAC95 Conference in Dallas. Since then some new works directed at improvement of reliability and efficiency of the RF system were carried out. Among them there are a new powerful pulse triode “Katran” installed in the output RF power amplifiers (PA) of three channels, modifications of the anode modulator control circuit and crow-bar system, a new additional RF channel for RF supply of RFQ and some alterations in placing of the anode modulator equipment decreasing a level of interference’s at crow-bar circuits. Some new checked at MMF RF channels ideas concerning of PA tuning are of interest for people working in this sphere of activity.  
 
THP75 Superconducting Accelerating Structure with Gradient as 2 Times Higher as TESLA Structure coupling, linac, acceleration 785
 
  • P. V. Avrakhov, V.E. Balakin
    PTC LPI, Protvino, Moscow Region
  A proposed new accelerating structure for TESLA is assumed to have an effective gradient 2 times more than existing 9-cell cavity. This structure is an interlaced combination of two side-cavity-coupled standing wave substructures with λ/4 cells length. Intercell coupling provides side-coupled cavities made from a special shape waveguide section. The high accelerating gradient is accomplished by 4 factors:
  1. The shortened accelerating cells have transit time factor 0.9 instead of 0.64 for conventional standing wave cells with λ/2 length.
  2. The side magnetic coupling has made it possible to reduce the cells beam aperture that reduce relation between the maximum surface field and the acceleration gradient.
  3. Stronger intercell coupling allows extending the accelerating cavity and improving a duty factor of linac.
  4. Availability of the side coupling elements enables to use them for power input and HOM-couplers. It reduces intercavity distance and enhances duty factor too.