
SOFTWARE TOOLS FOR HARDWARE ELLIPTICAL CAVITY
SIMULATOR MANAGEMENT AND CONFIGURATION

K. Klys, W. Cichalewski ∗, TUL, DMCS, Łódź, Poland

Abstract
The European Spallation Source (ESS) is currently in the

middle of its construction phase. This facility linear acceler-
ator consists of different sections. Superconducting part of
this linac will be equipped with spokes and elliptical cavities
(like M-Beta and H-Beta types). Various ESS linac compo-
nents will be delivered by different in-kind partners from
Europe. In order to provide a reliable development and eval-
uation platform hardware-based electronic cavity simulator
have been built. This solution is especially useful for Low
Level Radio Frequency (LLRF) systems development and
integration in case of limited access to real superconducting
structures. This contribution presents software tools devel-
oped for efficient cavity simulator parameters configuration
and management. Solutions based on Python and EPICS
framework are presented. Tool adaptation to ESS proposed
E3 framework and experience from cavity simulator opera-
tion are also discussed.

INTRODUCTION
The ESS will be the most powerful neutron source on

earth. In this facility, the spallation will be used to produce
free neutrons. The tungsten target will be hit with protons
with kinetic energy of 2.5 GeV. This leads to generation of
neutrons’ pulses. The superconducting part, which accel-
erates particles, will contain 120 cavities (84 H-Beta, 36
M-Beta) and 120 klystrons, operating at 704.42 MHz [1].
For each cavity the electrical field with appropriate gradient
and frequency must be delivered. Its parameters (amplitude
and phase) are controlled with LLRF control system [2].

The cavity simulator is a device which emulates the be-
haviour of superconducting High and Medium Beta cavities
and klystrons basing on signals received from LLRF control
system. It was created to minimize the risk of tests and mea-
surements conducted on real facilities using LLRF system
under development. In order to provide reliable results of
simulations, the cavity simulator reflects phenomena like
Lorentz force detuning, piezo compensation, beam loading
𝜋-modes, mechanical modes, amplifier non-linearity and
others .

The device is composed of high performance Field-
Programmable Gate Array (FPGA) evaluation board with
data converters, Digital to Analog/Analog to Digital Con-
verters (DAC/ADC) modules and specially designed Radio
Frequency (RF) front-end [3]. The simulator can be con-
trolled remotely with commands sent via Ethernet network.
Those messages are realised using Standard Commands for
Programmable Instruments (SCPI) syntax.

∗ wcichal@dmcs.pl

Figure 1: The cavity simulator area of simulation.

Figure 1 represents the scope of the cavity simulator’s 
simulation and devices whose functioning is considered.

HARDWARE CAVITY SIMULATOR
STRUCTURE AND COMMUNICATION
To simulate all mentioned effects and to cover the whole 

scope of cavities simulation, RF circuit has been designed 
(see Figure 2). The simulator’s hardware is responsible 
for generating RF and base-band signals. The clock and 
refer-ence signals are there produced as well. The 
structure of hardware can be divided into several parts [4]:

• Data Conversion module,

• Down-conversion module,

• Piezo module,

• Reference Generation module,

• Local Oscillator (LO) Generation module,

• Power Supply module.

First module is used to convert different data types. It dig-
itizes analog RF signals basing on down-conversion scheme.
The generation of RF outputs is realised with vector modula-
tor circuits. Down-conversion area decreases the frequency
range of RF inputs to suitable level for ADCs. It makes
use of active mixer circuit. Piezo part protects electronics
against high voltage from piezo driver, lowering it 100 times.
The module also emulates piezo element, functioning in 2 K

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA034

Device Control and Integrating Diverse Systems
WEPHA034

1153

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



temperature as a sensor or actuator, depending on conditions.
RF reference signal is distributed with Reference Generation
section. It can produce RF signal itself or spread externally
delivered. LO and clock signals are being created in LO
Generation module. Power Supply conditions the voltage
from off-the-rack AC-DC converter, it also adjusts the speed
of fans accordingly to the power consumption [5].

Figure 2: Hardware structure of the cavity simulator [5].

The cavity simulator can communicate with controlling
PC using Ethernet network. Its IP address can be received
through information sent via Universal Serial Bus (USB)
to Universal Asynchronous Receiver-Transmitter (UART)
converter. The raw Ethernet packages, containing the com-
mands of special syntax, are sent with Transmission Control
Protocol (TCP/IP) protocol.

PYTHON BASED SOLUTION
In order not to configure the cavity simulator with raw

commands using Telnet and to facilitate monitoring of de-
vice’s various parameters, the operator panel in Python lan-
guage has been developed. It allows to read and modify all
necessary parameters of the device. The Python has been
chosen since it it is one of the EPICS supported language
(PyEpics library). Furthermore, it possess modules to create
graphical user part and to handle TCP/IP communication.
The application is composed of 5 different tabs. The most
crucial part of the created Graphical User Interface (GUI) is
possibility of M-Beta and H-Beta cavities models’ configura-
tion. Each window provides options to read or write various
cavity simulator settings. "Status" window is the first visible
tab when program is being launched - Fig 3. It resembles
the front panel of the cavity simulator. An operator can mod-
ify RF outputs signals’ types and activate/deactivate them
pressing button imitating the particular output connector.

Next tabs allow to alter H-Beta and M-Beta models’ pa-
rameters (Q factor, detuning and gain), configure network
parameters, set the emulated influence of piezo element
on cavities model and send to the simulator any available
command. To prevent user from transferring incorrect com-
mands, one has been equipped with buttons, comboboxes
and entries which facilitate the cavity simulator managing

Figure 3: First tab of Python operator’s panel.

and make the whole interface more transparent and clear.
"Model Configuration" section (Fig 4.) provides entries and
text fields to read and set model settings. For each mode of
cavity model, there are factors that can be changed. Buttons
to read configuration from file or to write it have been placed
as well.

All commands generated with GUI are transferred to the
cavity simulator using sockets and TCP protocol. To handle
network exceptions, methods have been defined to inform an
operator about any encountered problem. The verification
mechanism, checking the status of the connection between
the device and the client (in this case it is Python solution)
has been implemented. It runs in the second thread, indepen-
dently from interface layer and once per 5 minutes checks if
it is possible to establish the connection sending command
demanding an answer with temperature value from one of
the sensors. These messages are presented in the appropriate
window and saved to file with current data, hour and results.

Figure 4: Model Configuration tab.

ESS E3 FRAMEWORK
The ESS EPICS Environment (E3) is a framework which

enables compiling and launching EPICS applications. It
has been developed in ESS facility for better managing and
maintaining EPICS software and its dependencies.

E3 allows for different approaches of configuring modules
and application for each user independently. It supports
working with different software architecture and hardware.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA034

WEPHA034
1154

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems



This environment ensures consistency of programs. It results
in more efficient maintenance of different kinds of systems
in the long term. E3 has been developed to reach coherence
for various EPICS bases, modules and users.

On the other hand the framework has limited freedom. It
provides the consistency for Integrate Control Systems (ICS)
stakeholders in case of Input/Output Controllers’ (IOCs)
quality management. E3 is able to deal with different quality
of open source modules, styles and codes. Additionally,
the high level of the device integration results in avoiding
low-level development.

From user point of view, E3 possesses several crucial fea-
tures like built-in template builders to generate draft of IOC.
An inexperienced operator can benefit from ready modules
and pre-selection as well.

E3 BASED DEDICATED IOC FOR
SIMULATOR MANAGEMENT

As an element of the distributed control system architec-
ture of ESS facility, E3 EPICS based application has been
created. It is composed of IOC with records allowing to con-
figure all parameters of the cavity simulator. Each Process
Variable (PV) corresponds to one setting of the device. In
order to establish connection between the simulator and IOC,
stream module has been employed. This is a communication
based on byte stream over TCP/IP. It enables sending string
messages to any machine if network parameters and proto-
col files, which determine the format of sent and received
messages, are correctly configured.

In order to access the data stored in PVs, the OPerator In-
terface (OPI) has been developed in Control System Studio
(CSS). This is an Eclipse based environment having features
letting access live data directly from EPICS records. It was
decided to use Best OPI Yet (BOY) mode since it ensures
drag and drop approach with configurable elements, which
can be connected to the data instantly. To manipulate de-
clared components Jython (Python implementation on Java
platform, it allows to import Java classes) language has been
used. It provides possibility of modifying their features and
behaviour with properly written script connected to the given
interface element.

The structure of the tool is similar to Python based solu-
tion. There are separate windows which correspond to the
given cavity simulator’s scope of settings. Figure 5 presents
"Status" window which provides buttons, diodes, switches
and combo-boxes to read and change the cavity simulator’s
parameters like state of the RF outputs channels and the
type of signal corresponding to them. The modification of
one of the window’s components cause change of the PV’s
value, which is sent to the cavity simulator as a proper string
message. Depending on type of command (read or write) the
response is obtained from the device, put into proper EPICS
record and then transferred to the associated component on
the interface.

Figure 5: Panel of IOC for cavity simulator.

M- AND H-BETA CAVITIES
CONFIGURATIONS EXAMPLES

The cavity is simulated as a parallel RLC circuit with
the particular impedance. Its answer is emulated by Infinite
Impulse Response (IIR) digital filter whose parameters can
be altered by user in model configuration windows as a gain,
Q and detuning [5]. To confirm the proper functioning of the
both tools and the cavity simulator, the measurements with
network analyser have been conducted. It was connected in
the loop with the cavity probe and RF input. In this manner,
the analyser was detecting any changes in the network caused
by response of the device for model’s modifications. Then,
both H-Beta and M-Beta models were configured and tested.
The parameters of cavities, which have been inserted into
user interface, are the results of measurements carried out
on real facilities in the temperature of 2 K (when resonant
cavities are superconductive).

Figure 6: H-Beta cavity model configuration.

Figure 6 depicts fixed parameters of H-Beta cavity’s
model in Python tool. It can be seen how the organisation
of the tab looks like and that some useful tools like sav-
ing/loading data to/from file have been provided. In Figure 7
the results of the tests with network analyser are presented. It
can be observed that the response of the model is composed
of 5 modes and one parasitic component which is an aliasing

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA034

Device Control and Integrating Diverse Systems
WEPHA034

1155

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



effect of the first mode (between 3𝑟𝑑 and 4𝑡ℎ modes). The
distances between modes correspond to values set in the
GUI as detuning.

Figure 7: H-Beta cavity model response.

Figure 8: M-Beta cavity model configuration.

To move model parameters to the simulator, second sec-
tion of the window was activated. All modes were configured
and sent to the device (Figure 8). As a result, for M-Beta
cavity model (Figure 9), it can be stated that the frequen-
cies of visible modes are compliant with values from the
Python tool. Detunings of modes are equal to values shown
in entries.

Figure 9: M-Beta cavity model response.

CONCLUSION
In this paper, software tools for hardware elliptical cavity

simulator management and configuration are described. The
overview of Python tool and E3 based solution with their
features is presented. Many test have been performed to
confirm that both GUIs are fully functional and they can
not only substitute raw commands sent via Telnet but also
facilitate access to the parameters of the simulator, their
modification and monitoring.

The software is still under development to become a part
of LLRF control system in ESS project and to fulfil all given
requirements. Next step for IOC application will be asso-
ciated with archiving data stored in records in case of the
device failure. For Python solution it is planned to use test
automation framework to create procedure for acceptance
testing. Thanks to that, after installation of cavity simulator
an operator could verify if it has been performed correctly.

ACKNOWLEDGMENTS
This work has been partially supported by the Polish Min-

istry of Science and Higher Education, decision number
DIR/WK/2016/2017/03-1.

REFERENCES
[1] M. Aberg et al., in ESS technical Design Report, Lund, Sweden,

Apr. 2013.
[2] F. Kristensen, in LLRF control system for ESS - Specification,

Lund, Sweden, Nov. 2013.
[3] M. Grzegrzółka, K. Czuba, and I. Rutkowski, “Rf front-end

for cavity simulator for the european spallation source,” in
22nd International Microwave and Radar Conference 2018
(MIKON), Poznan, Poland, May 2018, pp. 388–389.

[4] M.Grzegrzółka, K. Czuba, and I. Rutkowski, “Concept of a
cavity simulator for the european spallation source,” in Proc.
of ICALEPCS17, Barcelona, Spain, 2017, paper THPHA123.

[5] M. Grzegrzółka, K. Czuba, and I. Rutkowski, “Cavity simu-
lator for european spallation source,” IEEE Transactions on
Nuclear Science, vol. PP, pp. 1–1, Jan. 2019.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA034

WEPHA034
1156

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems


