Paper | Title | Other Keywords | Page |
---|---|---|---|
MOAPP02 | The SPIRAL2 Control System Status Just Before the First Beam | cavity, controls, linac, PLC | 8 |
|
|||
The SPIRAL2 Facility at GANIL is based on the construction of a superconducting LINAC (up to 5 mA - 40 MeV deuteron beams and up to 1 mA - 14.5 MeV/u heavy ion beams) with two experimental areas called S3 and NFS [1, 2]. At the end of this year, we will reach an important milestone with the first beam accelerated by the superconducting LINAC. The control system of the new facility relies on EPICS and PLC technologies. This paper will focus on the latest validated systems: machine protection system, the LINAC cryogenic system and the radio frequency system of the superconducting cavities. The validation requested a huge effort from all the teams but allow the project to be ready for this important moment. | |||
![]() |
Slides MOAPP02 [6.262 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOAPP02 | ||
About • | paper received ※ 23 September 2019 paper accepted ※ 08 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA075 | EPICS Support Module for Efficient UDP Communication With FPGAs | EPICS, controls, operation, low-level-rf | 388 |
|
|||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 The driver linac of the Facility for Rare Isotope Beams (FRIB) contains 332 cavities which are controlled by individual FPGA-based low-level RF controllers. Due to limited hardware resources the EPICS IOCs cannot be embedded in the low-level RF controllers but are running on virtual machines communicating with the devices over Ethernet. An EPICS support module communicating with the devices over UDP has been developed based on the Asyn library. It supports efficient read and write access for both scalar and array data as well as support for triggering actions on the device. Device-related parameters like register addresses and data types are configurable in the EPICS record database making the support module independent of the hardware and the application. This also allows engineers to keep up with evolving firmware without recompiling the support library. The implementation of the support module leverages modern C++ features and relies on timers for periodic communication, timeouts, and detection of communication problems. The latter allows the communication code to be tested separately from the timers keeping the run time of the unit tests short. |
|||
![]() |
Poster MOPHA075 [4.216 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA075 | ||
About • | paper received ※ 03 October 2019 paper accepted ※ 20 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA139 | Implementation of the PLC based Machine Protection System for Magnets at ESS | PLC, EPICS, operation, linac | 554 |
|
|||
The special properties of the neutrons allow to study the matter structure and dynamics of atoms and molecules. Neutron scattering is applied in a wide range of research fields such as chemistry of materials, biology, magnetism and pharmacy. The European Spallation Source ERIC (ESS) will be the most powerful neutron source in the world with the vision to help the researchers to develop new solutions for the challenges of our time. Inside the Integrated Control System Division (ICS), the Protection Systems group will provide a Beam Interlock System to protect the beam and to avoid the activation of equipment. One of these interlock systems is the Machine Protection System for Magnets (MPSMag), which collects the signals coming from each of the 150 quadrupoles distributed along the 600 meters long LINAC to prevent beam losses. The MPSMag first prototype has been implemented using industrial Programmable Logic Controllers (PLCs), the Profinet real-time fieldbus communications protocol, and Siemens TIA Portal software to fulfill the high availability requirements of the facility. The concept of operation, the state machine, and the electrical design will be presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA139 | ||
About • | paper received ※ 29 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||