Achieving Optimal Control of LLRF Control System with Artificial Intelligence

R. Pirayesh,

J.A. Diaz Cruz, S.G. Biedron, M. Martinez-Ramon, S.I. Sosa,

Dr. Asal Naseri

Space Dynamics Laboratory

Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM, 87131 USA

Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131 USA

Space Mission	<u>Artificia</u>	l intellige	nce framework		<u>Optimiza</u>	ation	
Virtual Telescope for X-ray Observations	Optimization phase		Multi objective	Various	0.2	<u>etic algorithm</u> Pareto front	
Attitude formation control with		RMS error, energy	genetic algorithm c	onditions	$0.18 - \frac{\cancel{3}}{\cancel{3}}$ $0.16 - \frac{\cancel{3}}{\cancel{3}}$ $0.14 - \frac{\cancel{3}}{\cancel{3}}$		
sub-arcsecond accuracy							

Approximately 1 hour observing the Crab Nebula

Orbit Design

LCLS-II LLRF & Resonance Control

4 layers (120 neurons, 80 neurons, 60 neurons), MSE=0.07

Detuning in superconductive cavities due to microphonics is a challenging problem due to the highquality factor Q of SRF cavities and tight detuning specifications (around 10Hz of peak detuning). Traditional approaches involve mechanical modifications of the cryomodule/cavity environment and active resonance control techniques. In this research we explore novel control architectures using machine learning as a tool to improve control performance.

<u>Sensors</u>

<u>Gyroscope</u>

Phase Ref Cavity

Innin

Sensing the angular velocity with noises included

<u>Star Tracker</u>

Sensing the angle of the satellites

BYP/LTU

E=4.0 GeV

*R*₅₆≈0 mm

σ ≈ 0.014%

Deep learning

Cavity Probe								
	<u>Controllers</u>							
	Robust against dynamical disturbances	Linear vs Nonlinear						
Sliding Mode Controller	Guaranteed	Nonlinear						
PID Controller	Not Guaranteed	Linear and Nonlinear						
Anti Gravity Gradient Torque	None	None						
<u>Actuator</u>								
<u>Reaction wheels</u> <u>Thrusters</u> Piezo electric								
<u>Stepper motor</u>								

Simulation

1) VTXO model

Data

Quaternion models, Sensors, actuators, GNC, and noises 2) LLRF

The CryoModule-On-Chip (CMOC) is a simulation engine developed at LBNL to model LLRF and beam-based feedback systems for Linac- driven FELs. cavities (with electromagnetic eigen-modes), of RF stations (RF source + Cavity + FPGA Controller)

cryomodules (Piezo tuners + RF Stations + mechanical modes) Linac sections (cryomodules + bunch compressor) beam instrumentation, loop delays and sources of noise

Future work

Producing data for the microphonics problem
 Applying AI based controller
 Include an optimal estimation of the LLRF to the control system and apply sensor fusion algorithms