
BENEFITS AND DRAWBACKS OF USING RUST
IN AN EXISITNG C/C++ CODEBASE*

B. S. Martins†1, Facility for Rare Isotope Beams, East Lansing, USA
1also at Columbia University, New York, USA

Abstract
Mozilla has recently released a new programming

language, Rust, as a safer and more modern alternative to
C++. This work explores the benefits (chiefly the features
provided by Rust) and drawbacks (the difficulty in
integrating with a C ABI) of using Rust in an existing
codebase, the EPICS framework, as a replacement for
C/C++ in some of EPICS' modules.

INTRODUCTION
Mozilla's new systems programming language, Rust,

promises to make entire classes of bugs detectable and
preventable at compile time [1]. Its first stable version,
dubbed 1.0, was released on May 2015. Rust has a heavy
focus on memory safety and uses novel concepts, such as
resource lifetimes and the borrow checker, to achieve that
goal. These features, however, come at the cost of
increased language complexity. Rust also aims to be fast
and provide binary compatibility with C while providing
high level constructs, making it a great candidate for
replacing both C and C++ as system languages. While Rust
does not have full feature parity with C yet [2], the
language is rapidly evolving in this direction.

EPICS [3] is an industrial controls system framework
used in several big science facilities around the world.
EPICS is primarily written in C and C++ and has been
incorporating contributions from several people along its
three decades of existence. Therefore, its codebase
contains a mixture of legacy and modern C and C++ code
that presents several opportunities for improvement.

Rust’s safety claims and modern features are enticing for
projects like EPICS. This work investigates the use of the
Rust language in the context the EPICS framework in an
attempt to answer the following research questions:

1. Would Rust have prevented actual EPICS bugs?
2. Is it straightforward to translate C/C++ code into

Rust?
3. Is it feasible to rewrite parts of EPICS into Rust?
4. Is it worth it to rewrite a big C/C++ project into Rust?

Question 1 will be answered by first examining EPICS'
issue tracker [4] and classifying its bugs into a few
categories, and then rewriting a few representative bugs in
Rust to verify if its compiler would have caught them.
Questions 2, 3 and 4 will be answered by evaluating the

manual reimplementation of a single EPICS base
component, iocsh, into Rust.

RUST'S MEMORY SAFETY FEATURES
While Rust has many modern programming language

features, such as first-class functions, closures, algebraic
types, async/await, etc., its strength lies in its ownership
system, which can be divided into three concepts:
ownership, borrowing and lifetimes. These concepts play
a fundamental role in ensuring memory safety.

Ownership
Rust's ownership mechanism ensures, at compile time,

that all values in a Rust program have an owner. Typically,
the owner of a value is the variable the value was first
assigned to. When that first value is assigned to a second
variable, it is said that the value is moved, and the first
variable loses ownership to the second variable. After a
value is moved, the first variable cannot be used anymore
to reference it. For example, in Listing 1, the variable a is
the first owner of the vector containing the values 1, 2 and
3. Then, on the following line, the vector is moved to the
variable b, which means a no longer owns the vector;
trying to access a again would violate Rust’s ownership
constraints, so the compiler prevents it from happening.

Listing 1: Ownership example

1 fn main() {
2 let a = vec![1,2,3];
3 let b = a;
4 println!("{:?}", a);
5 }

As shown in Listing 2, the compiler emits helpful
messages: it tells where the value was first moved (at line
3 when being assigned to b) and hints that the particular
type does not implement the Copy trait. The Copy trait
indicates that, rather than being moved, the value can be
instead copied to the destination. All primitive types
implement the Copy trait. If non-Copy values had to be
moved back and forth between owner variables Rust would
be a very impractical language. Therefore, there is a
mechanism for taking references to a value, which is called
borrowing.

* This material is based upon work supported by the U.S. Department of
Energy Office of Science under Cooperative Agreement DE-SC0000661,
the State of Michigan and Michigan State University.
† martins@frib.msu.edu
1 Category of interest for this study

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR02

WECPR02
928

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Listing 2: Ownership example compilation error

error[E0382]: borrow of moved value: `a`
 --> src/main.rs:4:22
 |
3 | let b = a;
 | - value moved here
4 | println!("{:?}", a);
 | ^ value borrowed
here after move
 |
 = note: move occurs because `a` has
type `std::vec::Vec<i32>`, which does
not implement the `Copy` trait

Borrowing
Borrows are similar to C++ references. However, while

C++'s references are guaranteed to be non-null and are
mutable by default, Rust's so-called borrow-checker
ensures that the programmer can take as many immutable
borrows as desired, while only one mutable borrow is
allowed at a time. Thus this mechanism prevents data races
at compile time, even across threads. A simple example of
borrowing is shown in Listing 3.

Listing 3: Borrowing example

1 fn print_vec(v: &Vec<i32>) {
2 println!("{:?}", v);
3 }
4 fn main() {
5 let a = vec![1,2,3];
6 print_vec(&a); // print_vec
"borrows" a
7 let b = a; // a is
moved to b
8 println!("{:?}", b);
9 }

Lifetimes
The third aspect of Rust's ownership system is lifetimes.

Each value in Rust has a lifetime associated with it. Most
of the time Rust can infer the lifetimes, but sometimes they
need to be made explicit. Lifetimes are a way of giving
names to scopes. Therefore, essentially, the compiler
ensures that the references needed in different functions
don't go out of scope, preventing use-after-free and similar
bug classes.

EPICS ISSUES ANALYSIS
In order to answer Question 1, an analysis of the EPICS'

issue tracker was performed. The issues were first filtered
by the tags "Fix Committed" or "Fix Release". Then, the
most recent 185 issues (spanning almost 10 years), were
manually classified, with the help of a custom tool, into one

of 10 categories at the author's discretion. The results of the
classification are summarized in Table 1.

Table 1: EPICS Issues Classification

Issue Category Count Percent

Logic 97 52.4 %

Build system 36 19.5 %

Race condition1 15 8.1 %

Buffer overflow1 9 4.9 %

Improvement 9 4.9 %

Use-after-free1 7 3.8 %

Type cast1 5 2.7 %

Null pointer dereference1 4 2.2 %

Third-party 2 1.1 %

Return from stack1 1 0.5 %

Total 185 100 %

Issue Categories
Logic Issues of this class are bugs on the software

operation logic that don't cause the system to crash. These
usually describe incorrect or unexpected behavior by the
software and are not of interest for this study.

Build system Issues of this class are related to EPICS'
custom build system and are not of interest for this study.

Race condition A number of issues arose from race
conditions between EPICS many execution threads. These
threads often communicate via shared memory, which can
easily lead to issues if data access is not properly
synchronized. Rust claims to be capable of detecting this
kind of issue using their concept of lifetimes and
ownership.

Buffer overflow Issues that referred to out-of-bounds
buffer reads and/or writes were classified as buffer
overflows. Rust detects invalid accesses at runtime and
safely stops the program (which Rust calls "panic"),
instead of potentially allowing the program to continue like
C and C++ can.

Improvement Issues with this classification were not
bugs at all; they were opened to request improvements or
new features to be implemented. These issues are not of
interest for this study.

Use-after-free Some issues referred to code that was
attempting to use a resource after it had been released. Rust
has the concept of lifetimes to prevent the use of a resource
after it is "Dropped" (in Rust-speak).

Type cast A few issues arose from C/C++'s implicit
type casting and from unaligned explicit casts on platforms
that don't support unaligned access. Rust prevents this class
of bugs by having a strict type system that requires explicit
casting.

Null pointer de-reference Issues of this nature refer
to code that tries to de-reference a pointer that was set to
null. Rust can statically detect some cases of null
dereference.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR02

Software Technology Evolution
WECPR02

929

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Third-party EPICS relies on a few third-party
libraries, such as yacc and flex, to build parsers for its
Domain Specific Language for specifying IOC database
files, and this class of issues refers to bugs with the
interaction between EPICS and such libraries. Issues of this
nature are not of interest for this study.

Return from stack The single identified issue of this
nature refers to a case where a function was allocating data
on the stack and then passing that data to a second function
to be run on a separate thread. Since the threads would run
independently, there was no guarantee that the data seen by
the second thread would remain valid. It is equivalent to a
function simply returning a reference to data allocated on
its stack. Rust can defend against this kind of bug with the
concept of lifetimes.

REWRITING ISSUES IN RUST
Of the 10 listed categories, 6 are of interest of this study:

race condition, buffer overflow, use-after-free, type cast,
null pointer de-reference and return from stack. One
representative bug from each category was chosen to be
rewritten in simplified C or C++ and in Rust. Then, each
pair of programs was compiled by their respective
compilers and run, if compilation succeeded. The
difference in behavior between compilers and compiled
programs was then analyzed. While all 6 representative
bugs were rewritten, only 2 will be examined in this paper,
in the interest of space: a use-after-free and a null pointer
de-reference bug.

All tests were run on an Intel i7-4700MQ CPU with 16
GB of RAM, running Ubuntu 18.04.2. The C and C++
compilers used were the system's gcc and g++,
respectively, both at version 7.3.0. The Rust compiler
version was 1.33.0, the latest one available at time of
testing.

Use-After-Free Bug
One example of an use-after-free-bug was found in the

EPICS issue #861214. The real bug is triggered when an
EPICS IOC is exiting, and it would be too contrived to be
reproduced here. An equivalent example is shown instead
in Listing 3a, with a Rust translation shown in Listing 3b.

Listing 3a: Use-after-free in C++

 1 #include <stdio.h>
 2 struct Dummy {
 3 int d;
 4 Dummy(int d):d(d) {}
 5 };
 6
 7 int main(void) {
 8 Dummy *dummy = new Dummy(42);
 9 delete dummy;
10 printf("%d\n", dummy->d);

11 return 0;
12 }

Listing 3b: Use-after-free in equivalent Rust

 1 #[derive(Debug)]
 2 struct Dummy(i32);
 3
 4 fn main() {
 5 let a = Dummy(42);
 6 drop(a);
 7 println!("{:?}", a);
 8 }

Listing 3c: Use-after-free in C++ compilation results

$ g++ -Wall -Wextra main.cpp -o main
$./main
0

Listing 3d: Use-after-free in Rust compilation results

$ cargo build
 Compiling bug861214 v0.1.0
(/home/bmartins/bug861214)
error[E0382]: borrow of moved value: `a`
 --> src/main.rs:7:22
 |
6 | drop(a);
 | - value moved here
7 | println!("{:?}", a);
 | ^ value borrowed
here after move
 |
 = note: move occurs because `a` has
type `Dummy`, which does not implement
the `Copy` trait

As seen in Listings 3c and 3d, the results illustrate a stark
contrast between the languages capabilities. The
C++ code involved in this bug accesses a field of an object
after it has been freed without objections from the
compiler. g++, even with warnings enabled, doesn't raise
an issue with the program. Rust, on the other hand, is able
to catch the bug at compile time, by using its concept of
ownership: the structure instance of Dummy is first owned
by the variable a. Then, on the next line, it is moved to the
function drop. Hence, after drop executes, a is not valid
anymore, and cannot be accessed. This design choice is so
fundamental that it makes for a clever implementation of
the function drop: drop takes the value (by move) and
then does nothing.

Null Pointer Dereference Bug
Null references were once called a "billion dollar

mistake" [5], given how dangerous and costly they can be.
The EPICS issue #1369626 has such a bug: EPICS allows

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR02

WECPR02
930

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

the user of its libraries to register callback functions on
certain events, via function pointers. In this particular case,
a null pointer was being inadvertently passed to the
registration function, which happily accepted it. However,
when the relevant event triggered, the trigger code tried to
call the registered function via the function pointer, without
checking that the pointer was actually valid, leading to a
null pointer de-reference. A simplified example of such
bug is shown in Listings 4a-4d.

Listing 4a: Null pointer deref. in C

1 typedef void caEventCallback-
Func(int arg);
2 int main(void) {
3 caEventCallbackFunc *cb = NULL;
4 cb(0);
5 return 0;
6 }

Listing 4b: Null pointer deref. in Rust

1 type CaEventCallbackFunc = *const
fn (i32) -> ();
2 fn main() {
3 let cb : CaEventCallbackFunc =
std::ptr::null();
4 (*cb)(0);
5 }

Listing 4c: Null pointer deref. in C compilation results

$ gcc -Wall -Wextra main.c -o main
$./main
Segmentation fault (core dumped)

Listing 4d: Null pointer deref. in Rust compilation results

$ cargo build
 Compiling bug1369626 v0.1.0
(/home/bmartins/comsw6156/pa-
per/rust/bug1369626)
error[E0133]: dereference of raw pointer
is unsafe and requires unsafe function
or block
 --> src/main.rs:4:5
 |
4 | (*cb)(0);
 | ^^^^^ dereference of raw pointer
 |
 = note: raw pointers may be NULL, dan-
gling or unaligned; they can violate
aliasing rules and cause data races: all
of these are undefined behavior

gcc allows this: from gcc's point of view, the
programmer is ultimately responsible for their pointers,

full stop. Rust, interestingly, doesn't disallow the use of null
pointers per se; Rust's compiler does halt compilation if it
finds a raw pointer being de-referenced, but the error
message tells us that the de-reference would be allowed if
it was done inside an unsafe block. The unsafe block is an
escape hatch from the strictness of Rust's compiler: it is a
way for the programmer to tell the compiler that they know
what they are doing and that they performed the
appropriate memory safety checks for that particular
snippet. From Rust's perspective, gcc can be thought of as
running in unsafe mode all the time!

Issue Reimplementation Summary
As seen in Fig. 1, most of the 185 classified issues, 144

(77.8%), belonged to 4 categories that were not the target
of this study, since they wouldn't, in principle, benefit from
Rust's static analysis: logic bugs, build system,
improvements (feature requests) and bugs in third-party
libraries.

Figure 1: EPICS issue categories distribution.

The remaining 41 (22.2%) issues were further inspected
with the aim of having one issue from each class to be
selected for reimplementation in C or C++ and Rust.

Rust’s compiler, using the default out of the box options,
was able to remarkably catch all 6 tested bugs: 5 bugs were
caught at compile time, by performing static analysis, and
1 at run time through bounds checking. All bugs caught at
compile time prevented the compilation from proceeding.
Most of the error messages emitted by Rust’s compiler
were informative, providing a way to get more information
on the particular emitted error and, sometimes, a
suggestion on what to do to fix the problem that it
encountered. In light of these findings, were EPICS be
written in Rust, it would not be unreasonable to extrapolate
that the 32 (17%) bugs in these 5 classes wouldn't even
have appeared in the issue tracker. It can also be argued that
the 9 (4.8%) bugs from the sixth class (buffer overflow)
would have been more easily found and fixed given the
informative panic message issued by Rust at runtime, if run
with the debug binary.

The GNU compilers, on the other hand, only caught 2
out of the 6 bugs, and in both cases they just emitted
warnings instead of halting the compilation. It can be
argued that the -Werror flag could have been passed to
gcc and g++ in order to halt the compilation on warnings,
but since their warnings can vary greatly by platform and

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR02

Software Technology Evolution
WECPR02

931

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

compiler version, -Werror can potentially make the build
system brittle. It is also interesting to note that 2 bugs that
didn't even get a warning emitted by gcc (buffer overflow
and null pointer de-reference) resulted in an outright crash
at runtime.

Table 2: EPICS Issues Reimplementation Findings

Bug class Lang Bug caught? Crash?

Race
condition

C++ No No

Rust At compilation -

Buffer
overflow

C No Yes

Rust At execution No

Use-after-
free

C++ No
No, but
wrong
result

Rust At compilation -

Type cast
C No (warning) No

Rust At compilation -
Null
pointer
deref.

C No Yes

Rust At compilation -

Return
from stack

C No (warning) Yes

Rust At compilation -

Regarding Rust’s usability, Rust was very
straightforward to install and simple to start coding with.
The Rust book [6] presents an excellent overview of the
language, especially for people already familiar with other
programming languages. The sample snippets of code in C
and C++, albeit short, could be translated with little effort
into Rust, resulting in an almost direct translation in all
cases. Furthermore, the error messages given by the
compiler were informative, giving precise bug locations,
effects and sometimes advice on how to fix them.

REIMPLEMENTATION OF A LARGE
CODEBASE

In order to answer research Questions 2-4, a component
of EPICS base, called iocsh (IOC shell), was chosen to be
reimplemented in Rust while still being part of the larger
C/C++ project, so the difficulties and benefits of Rust could
be evaluated.

Automatic Translation Attempt
Before starting to manually translate C/C++ code into

Rust, a couple of existing C/C++ to Rust transpilers were
tested: CRUST [7] and C2Rust [8].

CRUST was simpler to install and compile, but the
program execution "crashed" (panicked, in Rust's parlance)
with an "Index out of bounds" error.

C2Rust is a much more complex and interesting project:
it leverages LLVM (and therefore, clang) to do analysis and
parsing of the original code. It also uses a tool, called
BEAR (Build EAR), that has to be used during a normal

compilation of the original EPICS code in order to generate
some metadata about the build process itself. Then, C2Rust
can use the output of the BEAR program to aid in the
transpilation. C2Rust itself took 9 minutes to compile.
However, it also panicked when used.

Given these results, it seems that automated translation
tools from C/C++ to Rust are not yet ready to be used in
large codebases. It is not clear that they’ll ever be ready for
this task, given C, C++ and Rust great complexity and
differences.

REIMPLEMENTATION OF EPICS' IOCSH
iocsh is a simple shell that typically runs inside EPICS

IOCs. The responsibilities of iocsh are to parse commands
given to it, find the parsed commands in a global registry
of available commands, and execute them. This also
involves maintaining the global registry of commands and
exposing an interface to allow different parts of EPICS to
register new commands with iocsh. It has only 1.5 kloc,
and sizable chunks of them can be replaced with Rust's
standard library functions.

Due to a higher degree of difficulty than anticipated, a
non-trivial amount of time was spent attempting different
approaches on how to reimplement the shell in a way that
preserves functionality and is fully interoperable with C.
For example, one obstacle was the fact that the registry that
iocsh maintains is implemented, in C, as a program-global
hash map and a linked list of structures describing the
available commands, which is not protected by a mutual
exclusion lock (presumably because the registry is only
populated during IOC startup, which is single threaded at
that point). Rust ordinarily does not allow write access to
non-locked global data, so a different approach was
needed.

Another important obstacle was the integration between
Rust and C code, in the sense of finding exactly how to link
(in the linker sense) both Rust-generated and gcc-generated
object files together. Since Rust is still fairly new and
rapidly changing there's a lot of conflicting advice, most
being obsolete, on how to approach this issue. However, a
Rust users forum [9], which seems to be very active, was
successfully used to obtain help.

It is worth noting that, in the course of this study, a bug
in EPICS itself (that leads to a segmentation fault), was
found and reported by the author on EPICS' Issue Tracker.
This bug would have been prevented by Rust, and would
have been counted in this paper’s analysis.

Build System Integration
The EPICS framework has a custom build system, built

on top of Makefiles, that is capable of compiling EPICS for
several different targets: from the usual
Linux/Windows/Mac targets to more niche vxWorks and
RTEMS embedded operating systems. Rust has a
standalone, Rust-specific build system, named cargo,
which manages not only the compilation itself but also
project dependencies.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR02

WECPR02
932

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

In order to have EPICS be able to compile the iocsh port
to Rust, the Makefile associated with iocsh had to be
modified to use cargo. Cargo compiles the Rust code into
a C ABI compatible shared object library file, which is then
linked to the rest of the unmodified EPICS framework. It
is important to note that, as configured for this project,
cargo only compiles for the host architecture (Linux on
x86_64) and as a debug (as opposed to a release) target.

With this setup, it is possible to compile both regular
EPICS code and the rewritten iocsh module at the same
time by simply issuing make at the root of the project
folder.

Global Data Structures
As mentioned before, iocsh exports functions that allow

any part of EPICS to register new commands with the shell.
These functions can be called at any time, and the
registered commands are kept in a couple of data structures
with static storage inside iocsh: a hash map (with a custom
C implementation), in order to allow O(1) command
lookups, and a linked-list (also with a custom C
implementation), in which command description structures
are kept in alphabetical order with respect to the command
names, presumably to make it easy to display the list of
available commands with the help command.

In the Rust version the standard library’s HashMap data
structure was used. In order to display available commands
in alphabetical order, the help iocsh command simply sorts
the names of the commands in the HashMap before
printing them to the screen. Since Rust does not like
variables that are static, global and mutable, because they
are not thread-safe, the global HashMap had to be put
behind a RwLock (Read-Write Lock), so it could be
concurrently read by many threads and be written to in a
mutually exclusive way. Rust knows that synchronization
primitives, such as the RwLock , can be used by different
threads safely.

FFI – Foreign Function Interface
The EPICS framework provides many programming

constructs to its users as a way to fill the gaps in C's sparse
standard library and as a way of allowing EPICS programs
to be written in a platform-agnostic way. Examples of such
constructs are implementations for a general-purpose hash
table and for a linked list, as mentioned before. Modern
languages like Rust have such constructs available in their
standard libraries. However, one interesting facility
provided by EPICS is a macro expansion library, called
macLib. macLib allows the users of the IOC shell to be able
to parameterize commands by making use of macro
expansions, as shown in Listing 5.

Listing 5: EPICS macro substitution in an IOC

epics> epicsEnvSet("HELLO", "Hello,
world!")
epics> echo $(HELLO)
Hello, world!

While it would be perfectly possible to rewrite macLib
in Rust, it is much better to be able to just use such readily
available functionality. Hence, this was a great opportunity
for taking advantage of Rust's binary compatibility with C.
To that end, all available functions in macLib were
declared in a way that Rust can understand and use them.
Thin wrappers around them were created to act as an
interface between safe (Rust) and unsafe (C) code, while
also performing data type conversions between the
languages. One such noteworthy conversion is between C
and Rust strings: a C string is essentially a pointer to a
region of memory that has a null byte as its terminating
character; a Rust string, on the other hand, has length
information encoded in them and no terminating null byte.
Also, Rust strings are UTF-8 encoded.

Even though the macLib wrapper was very thin, it still
amounted to 146 lines of code (as counted by cloc), which
speaks to the amount of work needed to craft such wrapper.

Command Parser
The main responsibility of the IOC shell is to receive

commands from a user or a script and execute them.
However, the syntax for the language that the shell accepts
is not formally defined; instead, command line inputs are
parsed in an ad-hoc way. The IOC shell makes use of the
widely-used libreadline library to provide command-
line editing and history capabilities.

In the Rust reimplementation the parsing of commands
is done by making use of regular expressions through the
regex crate (a crate, in Rust's parlance, is akin to a library
in C or Python). The reimplementation also allows
command-line editing and history, via the rustyline crate.
The use of regular expressions greatly simplified the code
for parsing inputs to the shell, at a loss of more precise error
messages.

Reverse FFI
Since the main objective is to rewrite part of a C/C++

project in Rust, the resulting Rust module must be able to
communicate with C/C++ modules. Communications in
one direction (Rust accessing C functions) were achieved
in the use of the macro expansion library, macLib.
Communication in the other direction (C accessing Rust
functions) is made possible by marking the structures and
functions in the Rust module API as C-compatible. This
tells the compiler to generate binaries that can be used by
C.

This was the bulk of the iocsh reimplementation and its
most challenging part. Passing objects back and forth
between C and Rust proved to be difficult due to Rust's
great strictness about object lifetimes and access rules,
contrasted with C's complete lenience. In many instances it
was laborious to determine the ownership of certain
resources (and, by extension, which language is
responsible for freeing them) coming from C. For example,
when registering a command with iocsh, EPICS code
allocates static structures and pass pointers to them to
iocsh. iocsh, however, is expected to allocate a new
structure on the heap that has some more metadata about

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR02

Software Technology Evolution
WECPR02

933

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

the command being registered, along with pointers to the
passed-in static structures. However, nowhere it is
specified that the passed in structures have to be static, it is
just convention. This kind of implicit lifetime information
had to be made explicit to Rust's compiler, which involved
a lot of boilerplate and data type conversion code.

CONCLUSION
Compiled, typed languages present a great opportunity

for static analysis tools to be run in order to catch bugs in
a program before they occur at runtime. The two major
systems languages, C and C++, notably have shortcomings
both in their design, preventing the compiler from statically
catching certain important classes of bugs such as null
pointer de-reference, and in their runtime implementation,
allowing for out-of-bounds access of array elements. While
it can be argued that the lack of such checks makes C and
C++ programs faster, and that modern C++ programmers
can mitigate some of these issues by using newer
constructs, such as smart pointers, it is a fact that unsafe
constructs can still be used, due to retrocompatibility
requirements, sometimes without even a warning, as
observed in this study.

Big C/C++ projects stand to benefit greatly from Rust’s
features. In order to evaluate if that would be the case for
the EPICS framework, this two-part study was conducted.
First, real world EPICS bugs were analyzed, classified and
then rewritten in simplified C or C++ and in Rust to
compare the GNU and Rust languages and compilers.
Then, a single EPICS component, iocsh, was chosen to be
reimplemented in Rust while still interfacing with the rest
of the EPICS framework. The evaluation of these two
studies provided the basis for the answers to the following
research questions:

Would Rust have Prevented Actual EPICS
Bugs?

Yes. Even though the analysis was done on the simplified
versions of the selected bugs, it was clear that the memory
safety features of the Rust compiler would have prevented
the compilation of such bugs from proceeding, while
probably providing good error messages as to why.

From the 185 classified issues, 41 (22.2%) of them were
due to memory safety or type casting issues. That
corresponds to more than a fifth of issues that could have
been prevented if Rust-like safety features were used.
Microsoft recently conducted a study [10] which stated that
approximately 70% of the security vulnerabilities they
address every year are memory safety issues. This
underlines the importance of stronger mitigation for such
issues.

Is it Straightforward to Translate C/C++ Code
into Rust?

Reasonably. Rust has many modern features that can be
easily mapped into from modern C++ code. C code is
trickier to port since C has no concept of RAII, so object
lifetimes have to be figured out first. While Rust lacks

some C and C++ low level features, such as bit fields
(which is being addressed by the Rust FFI working group),
it does have a familiar C-like syntax which makes it easy
for more direct reimplementations.

Is it Feasible to Rewrite Parts of EPICS into
Rust?

Yes, as was demonstrated by this study, but at a great
cost. The most important problem of porting just one
component of a C or C++ project into Rust is the interface
between the two languages. Since Rust is very strict with
memory safety, a lot of code has to be written as a glue
between the languages to make sure that Rust’s
assumptions are not being violated. The author of the
wlroots-rs Rust crate faced this problem and came to the
following conclusion (with their emphasis) [11]:

"Currently there is 11 THOUSAND lines of Rust in
wlroots-rs. All of this code is just wrapper code, it doesn’t
do anything but memory management. This isn’t just
repeated code either, I defined a very complicated and ugly
macro to try to make it easier. This wrapper code doesn’t
cover even half of the API surface of wlroots. It’s
exhausting writing wlroots-rs code, memory management
is constantly on my mind because that’s the whole purpose
of the library. It’s a very boring problem and it’s always at
odds with usability"

If the lifetime and ownership of the objects being passed
between the languages are well defined (which is often not
the case), this task becomes somewhat easier, if not
repetitive. In any case, careful consideration must be put
into deciding if the safety guarantees that Rust provides are
worth the cost of rewriting specific components into Rust.
Maybe this is true for core, critical components, but no so
much for peripheral components.

Is it Worth it to Rewrite a Big C/C++ Project
into Rust?

Probably not. Big C and C++ projects usually have a
long history of use and have had many bugs squatted.
Rewriting code into another language invariably
introduces new bugs. New components to a big C/C++
project, however, could potentially be written in Rust, if the
interface between the two languages in the project is well
defined. Additionally, as stated before, it might be more
cost-effective to rewrite only the critical components of a
project in Rust, rather than the entire project. New systems-
level projects, however, would benefit greatly from using
Rust from the start.

REFERENCES
[1] N. D. Matsakis and F. S. Klock II, “The Rust Language,” in

Proc. 2014 ACM SIGAda Annual Conference on High
Integrity Language Technology, New York, NY, USA, 2014,
pp. 103–104, doi:10.1145/2692956.2663188

[2] J. Triplett, “Intel and Rust: the Future of Systems
Programming,” presented at the Open Source Technology
Summit, Stevenson, Washington, USA, 2019.

[3] EPICS, https://www.epics-controls.org

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR02

WECPR02
934

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

[4] Bugs: EPICS Base,
https://bugs.launchpad.net/epics-base

[5] T. Hoare, “Null References: The Billion Dollar Mistake,”
presented at the QCon London, London, UK, 2009.

[6] The Rust Programming Language,
https://doc.rust-lang.org/book

[7] CRUST,
https://github.com/NishanthSpShetty/crust

[8] C2Rust, https://c2rust.com

[9] The Rust Programming Language Forum,
https://users.rust-lang.org

[10] M. Miller, “Trends, challenges, and strategic shifts in the
software vulnerability mitigation landscape,” presented at
BlueHat IL 2019, Tel Aviv, Israel, 2019.

[11] Giving up on wlroots-rs,
http://wayooler.org/blog/2019/04/29/rewritin
g-way-cooler-in-c.html

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR02

Software Technology Evolution
WECPR02

935

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

