
INTERRUPTING A STATE MACHINE 
K. V. L. Baker, ISIS Neutron and Muon Source, Didcot, UK

Abstract 
At the ISIS Pulsed Neutron and Muon Source [1] we in-

teract with a variety of types of beamline systems for con-
trolling the environment of samples under investigation. A 
state machine is an excellent way of controlling a system 
which has a finite number of states, a predetermined set of 
transitions, and known events for initiating a transition. But 
what happens when you want to interrupt that flow? An ex-
cellent example of this kind of system could be a field ramp 
for a magnet, this will start in a "stable" state, the "ramp to 
target field" event will occur, and it will transition into a 
state of "ramping". When the field is at the target value, it 
returns to a "stable" state. Depending on the ramp rate and 
difference between the current field and the target field this 
process could take a long time. If you put the wrong field 
value in, or something else happens external to the state 
machine, you may want to pause or abort the system whilst 
it is running you will want to interrupt the flow through the 
states. This paper will detail a solution for such an inter-
ruptible system within the EPICS [2] framework. 

WHAT IS A STATE MACHINE? 
A state machine can be defined in an electronics context 

as “a device which can be in one of a set number of stable 
conditions depending on its previous condition and on the 
present values of its inputs” [3]. An event is something that 
happens, it may be a timeout or value is reached, or it may 
be that a button is pressed. This event will in turn trigger a 
transition from one state to another – there is a change in 
the inputs for the state machine. Most practicable state ma-
chines are finite state machines – that is they have a finite 
number of states and transitions. Infinite state machines are 
plausible, but impractical, as such the use of the term state 
machine will typically refer to a finite state machine.  

One of the simplest examples of a state machine is some-
thing which can be on or off, such as a light. Most light 
circuits will have a switch of some variety, typically one 
that is open or closed. If the switch is open the light is off. 
Pressing the switch to closed is an event which will trigger 
the turn light on transition, and the light will then settle into 
the on state. Figure 1 shows a simple state diagram for the 
on/off state of the light. 

The complexity is already apparent, for example: if there 
is no power then the light cannot be on, if the lamp has 
broken then it can be off in the on state, if the switch de-
velops a fault then the state might not be alterable from the 
present one, and so on. The more complex the system, the 
longer the list of states that can occur. 

 
Figure 1: Simple light state diagram. 

This electronics concept is also applicable to program-
ming, especially of systems which interact. If, rather than 
a light, the button was to switch on a large scale lighting 
system that can only be run at night which requires water 
cooling. To allow the on state to be achieved the switch 
must now be closed, the water flow must be of a suitable 
rate and we need to know that the present time is between 
sunset and dawn. Whilst this set of criteria can be fed into 
a circuit and considered at an electronics level, this exam-
ple is well suited to a software solution. It is straightfor-
ward to determine sunset and dawn by looking it up from 
a trusted online source, and this can then be defined as an 
appropriate action to consider in the state machine. 

WHAT IS AN INTERRUPT ? 
Typically an interrupt can be defined as a break or stop 

of something continuous [4]. This is true in an electronics 
or computing context as well, where an interrupt is often a 
signal used to break the flow of code through a processor. 
This can then be thought of as a specific type of event, one 
which might alter the flow more rapidly than waiting for a 
state to complete. An interrupt is in essence an input which 
is treated in a prioritised fashion. 

If we take the complex light situation above, then the 
clock ticking over so that dawn has occurred will immedi-
ately mean a need to switch the light off. But, where is that 
time being checked?  

Each loop of the on state could go to that external source 
to get the time of dawn and sunset for the current date, and 
check the present time to see if it is night or not, then trigger 
a transition to the off state.  

A better programming solution would be for the on state 
to go and get the dawn and sunset times each day and store 
them in variables to compare, so it doesn’t need to keep 
spending time getting that data as well as checking on eve-
rything else. 

An ideal programming solution would be to have a sep-
arate process collect the dawn and sunset times once a day, 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA012

Experiment Control
MOPHA012

219

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



keep comparing the present time against those stored val-
ues, and provide a simple state of “day” or “night” to the 
on state to use to trigger appropriate transitions. 

QUEUED STATE MACHINE OVERVIEW 
A Queued State Machine (QSM) is a design pattern. 

Within software engineering a design pattern is a language 
independent reusable template that can be used to define 
how the code should be structured. The QSM is a common 
pattern used in LabVIEW [5], using a combination of de-
sign patterns to create the desired behaviour [6].  

The command, action queue or event queue design pat-
tern, and similarly the event-driven programming para-
digm used in other languages provide something similar to 
a queued state machine. The queue will typically have a 
first in, first out (FIFO) array that will take a list of actions 
to undertake, or events to process. The actions or events 
will then be dequeued (removed from the queue) and ac-
tioned in the same order that they were enqueued (added to 
the queue). 

For a queued state machine, you queue the list of states. 
A state differs from an action by being a stable condition 
until a transition occurs, whilst an action is an event that 
occurs and is then forgotten. This continuation of action, 
such as ramping a value, provides a “ramping” state.  

USE CASES AT ISIS 
There are a number of places where state machines can 

come in handy for control systems, and one of the key ones 
that has been considered recently at ISIS is that of magnets. 
From a beamline controls point of view, these will typically 
consist of a power supply unit (PSU) at the very least. The 
PSU will begin in a “stable” state, where the output and 
target are the same value, there is nothing changing. If a 
new target is requested, then the system will enter a ramp-
ing state. In this ramping state the output is changing at a 
defined rate. Once the output and target are the same value 
then the system can return to the stable state. 

The issue is that whilst ramping things can change, and 
waiting for it to reach the target might not be practical, or 
potentially possible. If you are ramping from 0 Amps to 
100 Amps at 0.0001 Amps/second then it will take more 
than 11 days. If you actually wanted to go to 1 Amp, which 
would take about 3 hours, then there is a big difference in 
elapsed time due to the mistake. The 22 days it would take 
to undertake that first ramp and then get back to the actu-
ally desired 1 Amp could be used in a much better way than 
waiting for ramps to finish.  

Aborting that ramp would limit the delay. This means the 
ramping state now needs to consider the following events: 
are target and output the same; and whether or not an abort 
has been requested. If an abort was requested there may be 
some other tasks to undertake, such as setting the target to 
the present output. You could monitor the abort in a sepa-
rate process, as with the time of day previously described, 
and simply set the target to the present output when the 
abort is selected, which should transition the state from 
ramping to stable. 

However, a pause scenario might require something dif-
ferent again. If you pause you want to be able to resume 
from where you are when you requested the pause to your 
initial target, so you need to transition from ramping to 
paused. From paused, a resume will take you to back to 
ramping, and an abort will take you to stable, setting the 
target to the present output. Figure 2 shows a flow chart for 
the ramping state to decide on the transition to use. 

 
Figure 2: Flow chart for a ramping state. 

This starts to lead to obvious functions, for example an 
abort function, which can be called by different transitions. 
The system can be complicated further by various modes 
of operation. A magnet may be superconducting, and an 
abort may require better handling of switch temperatures 
and the current in leads that just setting the output and tar-
get to the same values. 

If the ramp you are using goes from one side of zero to 
the other (for example, negative to positive), then depend-
ing on the PSU it may mean that the ramp has to go to zero, 
change the direction of the magnet, and then continue. This 
transition logic could be in the hands of the firmware or the 
control system. If it is the former, then the control system 
doesn’t need to be concerned about anything, and can just 
send ramp targets as it wishes. If the firmware doesn’t han-
dle a transition to zero itself, then there are a number of 
states that can be dictated at the start of the ramp, namely 
“ramp to 0”, “change direction”, and “ramp to target”. With 
a superconductor having reached target then the leads to 
the switch may also need to be ramped, adding to the com-
plexity of the states and transitions. 

With the number of interrupts, events to monitor, and 
transition points to consider each state is repeating quite a 
bit of code. For example, whilst ramping towards 0, we are 
continuously asking, are we at 0, has an abort been re-
quested, has a pause been requested, has another interrupt 
occurred? Upon reaching 0 we have to know have we just 
ramped down the leads for a superconductor, or are we 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA012

MOPHA012
220

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control



about to change the direction and go to a new value, or is 
the system at the requested target? This next step then 
needs to know the history and a lot more about the state of 
the system. 

This is where a design pattern, such as a queued state 
machine, can come in handy.  

QUEUED STATE MACHINE IN STATE 
NOTATION LANGUAGE 

At ISIS our control system for beamlines, IBEX, is based 
on EPICS. Because state machines are useful there is a sys-
tem designed for use within EPICS to programme state ma-
chines, the State Notation Language and Sequencer [7]. An 
SNL programme is constructed of a number of concur-
rently running finite state machines called state sets. It has 
built-in functions for interacting with EPICS. It is possible 
to call C code directly from states, and the syntax is very 
similar to C. Which state in a state set to run is decided by 
the when clause. If the logic within a when clause evaluates 
to True that state is enacted. This description allows a 
slightly different, and useful language to be employed for 
this discussion. Rather than considering a finite state ma-
chine, a state set can be considered, with a when clause be-
ing the trigger to run a state, rather than considering trig-
gers to exit states. 

The queued state machine can be considered as a number 
of state sets interleaving with each other. There is the main 
state set that runs the states for what is being controlled, the 
when clause driven by a single variable, a state set moni-
toring the interrupts, and a state set managing the queue. 

The state set monitoring the interrupts has to be a tight 
loop. After startup, it does nothing more than monitor those 
values, and do the least amount of work possible to make 
the other state sets change their behaviours. The queue state 
set does nothing more than manage the queue, and the main 
state set has all the logic and does all the work. 

Abstracted Example 
Let us consider a fairly simple abstracted system. The 

system can be started, paused, resumed, and aborted. 
The system can be run in Mode A, where a start requires 

going through states 1, 2 and 3; Mode B, where a start ne-
cessitates states 2, 4, and 1 to be run in that order; or Mode 
C which runs states 1, 3, 4 and 2. Any pause or abort has to 
be acted on quickly. Whilst this is a simplified abstraction, 
it should be possible to see how the queue could be helpful 
in a more complex system without too much imagination. 

 
The main state set in this abstracted example would 

consist of states for being idle, start, pause, abort, state 1, 
state 2, state 3, and state 4. As we are dealing with an ab-
straction we can assume that the states handle themselves, 
in reality there may be more interaction between them and 
they could need to respond to certain interrupts as well.  

The idle state will be just that, idle, there will be no ac-
tions undertaken here. Start will look at the mode of the 
system, and queue up the states to pass through. The pause 
state will pay attention to whether or not the system has 

been started, and on a second request, or resume, it will 
allow the system to continue as if there had been no inter-
ruption. Abort will clear the queue of states, and return the 
system to an idle state. This state set would be controlled 
by a single variable to represent each state, an enum would 
be ideal, and the state to run will be whatever is contained 
in that variable.  

 

 
Figure 3: Start in mode B of QSM. 

The interrupt state set monitors the start, pause/resume 
and abort requests. Should any of these change, then the 
associated main state is triggered, simply by setting the 
driving variable, and this state set quickly goes back to 
looking at the interrupting values. Should the interrupt be 
invalid, then this state set can issue the warning and ignore 
it, without delaying the main code to deal with the situation 
too much. 

The queue state set will receive a list of states to go 
through from the start state, and as each state ends, will 
action the next state in the queue by setting the driving var-
iable for the main state set, pausing and resuming as appro-
priate. 

Figure 3 and Figure 4 illustrate some examples of the 
flows detailed above. 

 
 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA012

Experiment Control
MOPHA012

221

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



 
Figure 4: Start, pause, abort in mode C of QSM. 

CONCLUSION 
If you consider a ramp, the clauses which dictate the next 

state, or the state to run, become complicated. For example 

whilst ramping you have to check whether you are at your 
target, whether pause has been pressed, or whether an abort 
has been requested. Three checks aren’t too bad, but if this 
were a ramp for a cryomagnet then consideration needs to 
be paid to whether or not the system is quenched, another 
trip has been seen, the temperature of the magnet, etc. If 
you then want to control your ramp rate as you ramp, going 
to specific targets, or even just changing direction at zero, 
you then have to start considering the end of a ramp step 
versus reaching your target, increasing the complexity fur-
ther for your states and transitions. As such, running a sys-
tem which can be interrupted allows for the complexity, 
without sacrificing readability or responsiveness. 

A state machine is a powerful technique for keeping 
track of what a system is doing, whilst a queue allows you 
to order and re-order those states, whilst being able to in-
terrupt them provides a more responsive system. 

 
REFERENCES 

[1] The ISIS Pulsed Neutron and Muon Source, 
http://www.isis.stfc.ac.uk/ 

[2] EPICS https://epics-controls.org/ 
[3] State Machine Definition, https://www.lex-

ico.com/en/definition/state_machine 
[4] Interrupt Definition, https://www.lexico.com/en/def-

inition/interrupt 

[5] LabVIEW, https://www.ni.com/en-gb/shop/lab-
view.html 

[6] LabVIEW, design patterns https://labview-
wiki.org/wiki/Design_Patterns_Overview 

[7] State Notation Language, https://www-
csr.bessy.de/control/SoftDist/sequencer/ 

 
 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA012

MOPHA012
222

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control


