Author: Vaccarezza, C.
Paper Title Page
MOPAB133 Recovering the Positron Beam After Muon Production in the Lemma Muon Source 470
 
  • I. Drebot
    INFN-Milano, Milano, Italy
  • M.E. Biagini, O.R. Blanco-García, A. Giribono, S. Guiducci, C. Vaccarezza, A. Variola
    INFN/LNF, Frascati, Italy
  • S.M. Liuzzo
    ESRF, Grenoble, France
 
  In the LEMMA muon source pro­posal* a positron beam at 45 GeV is used to pro­duce muons at thresh­old by in­ter­ac­tion with some tar­gets. In order to re­lease the re­quired in­ten­sity on the main positron source, or­ders of mag­ni­tude higher than the state of the art, the pos­si­bil­ity to re­cover the pri­mary positron beam after the in­ter­ac­tion with the tar­gets was stud­ied. The par­ti­cles dis­tri­b­u­tion, with a strongly de­graded en­ergy spread after the in­terac- tion, was in­jected back into a low emit­tance, large en­ergy ac­cep­tance 45 GeV ring. Stud­ies of in­jec­tion ef­fi­ciency were per­formed. The pos­si­bil­ity of com­press­ing the beam in a linac be­fore in­jec­tion was also stud­ied. As a re­sult, even with­out com­pres­sion, about 80% of the dis­rupted e+ beam can be in­jected back into the ring.
* D. Alesini et al, "Positron driven muon source for a muon collider", arXiv:1905.05747v2 [physics.acc-ph], May 2019
 
poster icon Poster MOPAB133 [4.171 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB133  
About • paper received ※ 17 May 2021       paper accepted ※ 24 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB257 Effects of Mode Launcher on Beam Dynamics in Next Generation High Brightness C-Band Guns 813
 
  • A. Giribono, D. Alesini, F. Cardelli, G. Di Raddo, M. Ferrario, A. Gallo, J. Scifo, C. Vaccarezza, A. Vannozzi
    INFN/LNF, Frascati (Roma), Italy
  • G. Castorina
    AVO-ADAM, Meyrin, Switzerland
  • L. Ficcadenti
    INFN-Roma, Roma, Italy
  • G. Muti
    Sapienza University of Rome, Rome, Italy
  • G. Pedrocchi
    SBAI, Roma, Italy
 
  High-bright­ness RF photo-in­jec­tors plays nowa­days a cru­cial role in the fields of ra­di­a­tion gen­er­a­tion and ad­vanced ac­cel­er­a­tion schemes. A high gra­di­ent C-band pho­toin­jec­tor con­sist­ing of a 2.5 cell gun fol­lowed by TW sec­tions is here pro­posed as an elec­tron source for ra­di­a­tion user fa­cil­i­ties. The paper re­ports on beam dy­nam­ics stud­ies in the RF in­jec­tor and il­lus­trates the ef­fects on the beam qual­ity of the mode launcher with a focus on the com­pen­sa­tion of the quadru­pole RF com­po­nents.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB257  
About • paper received ※ 19 May 2021       paper accepted ※ 08 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB270 Beam Dynamics Studies in a Standing Wave Ka-band Linearizer 857
 
  • J. Scifo, M. Behtouei, L. Faillace, M. Ferrario, A. Giribono, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • M. Migliorati
    INFN-Roma1, Rome, Italy
  • M. Migliorati
    Sapienza University of Rome, Rome, Italy
  • G. Torrisi
    INFN/LNS, Catania, Italy
 
  Next-gen­er­a­tion FEL user fa­cil­i­ties re­quire high-qual­ity elec­tron beams with kA peak cur­rent. The com­bi­na­tion of a high bright­ness RF in­jec­tor and a mag­netic com­pres­sion stage rep­re­sents a very per­for­mant so­lu­tion in terms of elec­tron beam emit­tance and peak cur­rent. One of the im­por­tant is­sues is the de­sign of a proper de­vice that acts as a lin­earizer for the beam lon­gi­tu­di­nal phase space. Re­cently, the de­sign of a SW Ka band RF ac­cel­er­at­ing struc­ture has been pro­posed with promis­ing re­sults. The paper re­ports on elec­tron beam dy­nam­ics stud­ies in the de­scribed RF struc­ture.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB270  
About • paper received ※ 19 May 2021       paper accepted ※ 29 August 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB069 The Sabina Terahertz/Infrared Beamline at SPARC-Lab Facility 1525
 
  • S. Macis
    La Sapienza University of Rome, Rome, Italy
  • M. Bellaveglia, M. Cestelli Guidi, E. Chiadroni, F. Dipace, A. Ghigo, L. Giannessi, A. Giribono, L. Sabbatini, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • A. Doria, A. Petralia
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • S. Lupi
    Sapienza University of Rome, Roma, Italy
  • V. Petrillo
    INFN-Milano, Milano, Italy
 
  Funding: SABINA is a project co-funded by Regione Lazio within POR-FESR 2014-2020 program.
Fol­low­ing the EU Ter­a­hertz (THz) Road Map*, high-in­ten­sity, ps-long, THz)/In­frared (IR) ra­di­a­tion is going to be­come a fun­da­men­tal spec­troscopy tool for prob­ing and con­trol low-en­ergy quan­tum sys­tems rang­ing from graphene, and Topo­log­i­cal In­su­la­tors, to novel su­per­con­duc­tors** ***. In the frame­work of the SABINA pro­ject, a novel THz/IR beam­line based on an AP­PLE-X un­du­la­tor emis­sion will be de­vel­oped at the SPARC-Lab fa­cil­ity at LNF-INFN. Light will be prop­a­gated from the SPARC-Lab to a new user lab fa­cil­ity nearly 20 m far away. This beam­line will cover a broad spec­tral re­gion from 3 THz to 30 THz, show­ing ps- pulses and en­ergy of tens of µJ with vari­able po­lar­iza­tion from lin­ear to cir­cu­lar. The cor­re­spond­ing elec­tric fields up to 10 MV/cm, are able to in­duce non-lin­ear phe­nom­ena in many quan­tum sys­tems. The beam­line, open to user ex­per­i­ments, will be equipped with a 5 T mag­netic cryo­stat and will be syn­chro­nized with a fs laser for THz/IR pump, VIS/UV probe ex­per­i­ments.
[*] S.S. Dhillon et al., J. Phys. D: Appl. Phys. 50, 043001 (2017);
[**] F. Giorgianni et al., Nature Commun. 7, 11421 (2016);
[***] P. Di Pietro et al., Phys. Rev. Lett. 124, 226403 (2020);
 
poster icon Poster TUPAB069 [0.884 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB069  
About • paper received ※ 16 May 2021       paper accepted ※ 21 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB100 FEL Design Elements of SABINA: A Free Electron Laser For THz-MIR Polarized Radiation Emission 1612
 
  • F. Dipace, E. Chiadroni, M. Ferrario, A. Ghigo, L. Giannessi, A. Giribono, L. Sabbatini, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • A. Doria, A. Petralia
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • S. Lupi
    Sapienza University of Rome, Roma, Italy
  • S. Macis
    La Sapienza University of Rome, Rome, Italy
  • V. Petrillo
    Universita’ degli Studi di Milano, Milano, Italy
  • V. Petrillo
    INFN-Milano, Milano, Italy
 
  Funding: SABINA is a project co-funded by Regione Lazio within POR-FESR 2014-2020 program.
SABINA, acronym of "Source of Ad­vanced Beam Imag­ing for Novel Ap­pli­ca­tions", will be a Self-Am­pli­fied Spon­ta­neous Emis­sion Free Elec­tron Laser (SASE FEL) pro­vid­ing a wide spec­tral range (from THz to MIR) of in­tense, short and vari­able po­lar­iza­tion pulses for in­ves­ti­ga­tion in physics, chem­istry, bi­ol­ogy, cul­tural her­itage, and ma­te­r­ial sci­ence. In order to reach these goals high bright­ness elec­tron beams within a 30-100 MeV en­ergy range, pro­duced at SPARC photo-in­jec­tor, will be trans­ported up to an AP­PLE-X un­du­la­tor through a dog­leg. Space charge ef­fects and Co­her­ent Syn­chro­tron Ra­di­a­tion (CSR) ef­fects must be held under con­trol to pre­serve beam qual­ity. Stud­ies on beam trans­port along the un­du­la­tor and of the prop­er­ties of the ra­di­a­tion field have been per­formed with "Gen­e­sis 1.3" sim­u­la­tion code. A down­stream THz op­tics pho­ton de­liv­ery sys­tem has also been de­signed to trans­port ra­di­a­tion on the long path from the un­du­la­tor exit up to user ex­per­i­men­tal area.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB100  
About • paper received ※ 19 May 2021       paper accepted ※ 11 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB366 Design and Realization of New Solenoids for High Brightness Electron Beam Injectors 2374
 
  • A. Vannozzi, D. Alesini, A. Giribono, C. Vaccarezza
    INFN/LNF, Frascati, Italy
 
  High-bright­ness, high-cur­rent elec­tron beams are the main re­quire­ment for fourth gen­er­a­tion light sources such as free-elec­tron lasers (FELs), en­ergy re­cov­ery Linacs (ERLs) and high-en­ergy lin­ear col­lid­ers. The most suc­cess­ful de­vice for pro­duc­ing such beams is the Ra­dio-Fre­quency pho­toin­jec­tor where a key el­e­ment is the gun so­le­noid. Its main task is to limit the beam emit­tance growth in the first ac­cel­er­a­tion stages by im­pos­ing a spi­ral­ing mo­tion to the beam. This paper is fo­cused on two mag­nets: the first one is the so­le­noid gun for the new pho­toin­jec­tor at INFN-LNF SPAR­C_LAB test fa­cil­ity. The de­sign, the re­al­iza­tion, and all the mea­sure­ments per­formed at the fac­tory and at LNF are shown. More­over, the de­sign of a so­le­noid for a novel C-band gun for Com­pact­Light pro­ject is pre­sented. Both mag­nets have been de­signed with the goal to reach the same in­te­grated field of the gun so­le­noid cur­rently in­stalled at SPAR­C_LAB, with an in­te­grated field qual­ity of 5·10-4 in a good field ra­dius of 30mm and 10mm ra­dius re­spec­tively for SPAR­C_LAB and Com­pact­Light so­le­noid. This one is equipped with a buck­ing coil to limit the field on cath­ode that could led to an un­de­sired emit­tance growth.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB366  
About • paper received ※ 19 May 2021       paper accepted ※ 18 June 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB051 Beam Dynamics for a High Field C-Band Hybrid Photoinjector 2714
 
  • L. Faillace, F. Bosco, M. Carillo, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • R.B. Agustsson, I.I. Gadjev, S.V. Kutsaev, A.Y. Murokh
    RadiaBeam, Santa Monica, California, USA
  • M. Behtouei, A. Giribono, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • A. Fukasawa, N. Majernik, J.B. Rosenzweig, O. Williams
    UCLA, Los Angeles, California, USA
  • S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work supported by DARPA GRIT under contract no. 20204571 and partially by INFN National Committee V through the ARYA project.
In this paper, we pre­sent a new class of a hy­brid pho­toin­jec­tor in C-Band. This pro­ject is the ef­fort re­sult of a UCLA/Sapienza/INFN-LNF/SLAC/Ra­di­a­Beam col­lab­o­ra­tion. This de­vice is an in­te­grated struc­ture con­sist­ing of an ini­tial stand­ing-wave 2.5-cell gun con­nected to a trav­el­ing-wave sec­tion at the input cou­pler. Such a scheme nearly avoids power re­flec­tion back to the kly­stron, re­mov­ing the need for a high-power cir­cu­la­tor. It also in­tro­duces strong ve­loc­ity bunch­ing due to a 90° phase shift in the ac­cel­er­at­ing field. A rel­a­tively high cath­ode elec­tric field of 120 MV/m pro­duces a ~4 MeV beam with ~20 MW input RF power in a small foot-print. The beam trans­verse dy­nam­ics are con­trolled with a ~0.27 T fo­cus­ing so­le­noid. We show the sim­u­la­tion re­sults of the RF/mag­netic de­sign and the op­ti­mized beam dy­nam­ics that shows 6D phase space com­pen­sa­tion at 250 pC. Proper beam shap­ing at the cath­ode yields a ~0.5 mm-mrad trans­verse emit­tance. A beam waist oc­curs si­mul­ta­ne­ously with a lon­gi­tu­di­nal focus of <400 fs rms and peak cur­rent >600 A. We dis­cuss ap­pli­ca­tion of this in­jec­tor to an In­verse-Comp­ton Scat­ter­ing sys­tem and pre­sent cor­re­spond­ing start-to-end beam dy­nam­ics sim­u­la­tions.
 
poster icon Poster WEPAB051 [0.827 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB051  
About • paper received ※ 18 May 2021       paper accepted ※ 01 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB238 Modeling Short Range Wakefield Effects in a High Gradient Linac 3185
 
  • F. Bosco, M. Carillo, L. Faillace, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • M. Behtouei, L. Faillace, A. Giribono, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • F. Bosco, M. Migliorati
    INFN-Roma1, Rome, Italy
  • L. Giuliano, A. Mostacci, L. Palumbo
    INFN-Roma, Roma, Italy
  • J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
 
  Funding: This work is supported by DARPA GRIT under contract no. 20204571 and partially by INFN National committee V through the ARYA project.
The in­ter­ac­tion of charged beams with the sur­round­ing ac­cel­er­at­ing struc­tures re­quires a thor­ough in­ves­ti­ga­tion due to po­ten­tial neg­a­tive ef­fects on the phase space qual­ity. In­deed, the wake­fields act­ing back on the beam are re­spon­si­ble for emit­tance di­lu­tion and in­sta­bil­i­ties, such as the beam break-up, which limit the per­for­mances of elec­tron-based ra­di­a­tion sources and lin­ear col­lid­ers. Here we in­tro­duce a new track­ing code which is meant to in­ves­ti­gate the ef­fects of short-range trans­verse wake­fields in lin­ear ac­cel­er­a­tors. The track­ing is based on quasi-an­a­lyt­i­cal mod­els for the beam dy­nam­ics which, in ad­di­tion to the basic op­tics spec­i­fied by the ap­plied fields, in­clude di­pole wake­field forces and a sim­ple ap­proach to ac­count for space-charge ef­fects. Such fea­tures pro­vide a re­li­able tool which eas­ily al­lows to in­spect the per­for­mances of a linac. To val­i­date the model, a par­al­lel analy­sis for a ref­er­ence case is per­formed with well-known beam dy­nam­ics codes, and com­par­isons are shown. As an il­lus­tra­tive ap­pli­ca­tion, we dis­cuss a study on align­ment tol­er­ances eval­u­at­ing the emit­tance growth in­duced by mis­aligned ac­cel­er­at­ing sec­tions.
 
poster icon Poster WEPAB238 [1.747 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB238  
About • paper received ※ 18 May 2021       paper accepted ※ 07 July 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB256 Three-Dimensional Space Charge Oscillations in a Hybrid Photoinjector 3240
 
  • M. Carillo, M. Behtouei, F. Bosco, L. Faillace, A. Giribono, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • L. Ficcadenti
    INFN-Roma, Roma, Italy
  • J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
 
  Funding: This work supported by DARPA GRIT under contract no. 20204571 and partially by INFN National committee V through the ARYA project.
A new hy­brid C-band photo-in­jec­tor, con­sist­ing of a stand­ing wave RF gun con­nected to a trav­el­ing wave struc­ture, op­er­at­ing in a ve­loc­ity bunch­ing regime, has shown to pro­duce an ex­tremely high bright­ness beam with very low emit­tance and a very high peak cur­rent through a si­mul­ta­ne­ous com­pres­sion of the beam in the lon­gi­tu­di­nal and trans­verse di­men­sions. A beam slice analy­sis has been per­formed in order to un­der­stand the evo­lu­tion of the rel­e­vant phys­i­cal pa­ra­me­ters of the beam in the lon­gi­tu­di­nal and trans­verse phase spaces along the struc­ture. A sim­ple model for the en­ve­lope equa­tion has been de­vel­oped to de­scribe the beam be­hav­ior in this par­tic­u­lar dy­nam­ics regime that we term "triple waist", since all three di­men­sions reach a min­i­mum con­di­tion al­most si­mul­ta­ne­ously. The model an­a­lyzes the trans­verse en­ve­lope dy­nam­ics at the exit of the hy­brid photo-in­jec­tor, in the down­stream drift where the triple waist oc­curs. The an­a­lyt­i­cal so­lu­tions ob­tained from the en­ve­lope equa­tion are com­pared with the sim­u­la­tions, show­ing a good agree­ment. Fi­nally, these re­sults have been an­a­lyzed also in terms of plasma os­cil­la­tion to ob­tain a fur­ther phys­i­cal in­ter­pre­ta­tion of the beam dy­nam­ics.
 
poster icon Poster WEPAB256 [1.162 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB256  
About • paper received ※ 19 May 2021       paper accepted ※ 21 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB372 SABINA: A Research Infrastructure at LNF 4505
 
  • L. Sabbatini, D. Alesini, M.P. Anania, M. Bellaveglia, A. Biagioni, B. Buonomo, S. Cantarella, F. Cardelli, E. Chiadroni, G. Costa, G. Di Pirro, F. Dipace, A. Esposito, M. Ferrario, M. Galletti, A. Gallo, A. Ghigo, L. Giannessi, A. Giribono, S. Incremona, L. Pellegrino, L. Piersanti, R. Pompili, R. Ricci, J. Scifo, A. Stecchi, A. Stella, C. Vaccarezza, A. Vannozzi, S. Vescovi, F. Villa
    INFN/LNF, Frascati, Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • A. Doria, A. Petralia
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • L. Giannessi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • S. Lupi
    Sapienza University of Rome, Roma, Italy
  • S. Macis
    La Sapienza University of Rome, Rome, Italy
  • V. Petrillo
    Universita’ degli Studi di Milano, Milano, Italy
  • V. Petrillo
    INFN-Milano, Milano, Italy
 
  Funding: SABINA is a project co-funded by Regione Lazio within POR-FESR 2014-2020 program.
SABINA (Source of Ad­vanced Beam Imag­ing for Novel Ap­pli­ca­tions) is a pro­ject aimed at the en­hance­ment of the SPAR­C_LAB re­search fa­cil­ity. This en­hance­ment is car­ried out through the fol­low­ing ac­tions: first, the in­crease of the up­time through the con­sol­i­da­tion of tech­no­log­i­cal sys­tems and the re­place­ment of some crit­i­cal equip­ment in order to limit the num­ber and ex­tent of faults; then, the im­prove­ment of the ac­cel­er­a­tor per­for­mances, by re­plac­ing some de­vices with up­dated ones. The ef­fect will be greater re­li­a­bil­ity of the ac­cel­er­a­tor, which will allow it to be opened as a fa­cil­ity for ex­ter­nal users, both in­dus­trial and sci­en­tific, with the goal of in­creas­ing the com­pet­i­tive­ness of in­dus­tries in a broad range of tech­no­log­i­cal areas and en­hanc­ing col­lab­o­ra­tions with re­search in­sti­tu­tions. The two user lines that will be im­ple­mented are a power laser tar­get area and a THz ra­di­a­tion line, by using a ded­i­cated un­du­la­tor. The un­du­la­tor and the THz line are also de­scribed in other con­tri­bu­tions to this con­fer­ence. A brief de­scrip­tion of the pro­ject and po­ten­tial ex­ploita­tions are re­ported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB372  
About • paper received ※ 24 May 2021       paper accepted ※ 01 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)