A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

vacuum

Paper Title Other Keywords Page
MO302 S1-Global Collaborative Efforts - 8-Cavity-Cryomodule: 2 FNAL, 2 DESY and 4 KEK cavity, cryomodule, linac, linear-collider 31
 
  • N. Ohuchi, M. Akemoto, S. Fukuda, H. Hayano, N. Higashi, E. Kako, H. Katagiri, Y. Kojima, Y. Kondou, T. Matsumoto, H. Matsushita, S. Michizono, T. Miura, H. Nakai, H. Nakajima, S. Noguchi, M. Satoh, T. Shidara, T. Shishido, T. Takenaka, A. Terashima, N. Toge, K. Tsuchiya, K. Watanabe, S. Yamaguchi, A. Yamamoto, Y. Yamamoto, K. Yokoya, M. Yoshida
    KEK, Ibaraki
  • C. Adolphsen, C.D. Nantista
    SLAC, Menlo Park, California
  • T.T. Arkan, S. Barbanotti, H. Carter, M.S. Champion, R.D. Kephart, J.S. Kerby, D.V. Mitchell, Y. Orlov, T.J. Peterson, M.C. Ross
    Fermilab, Batavia
  • A. Bosotti, C. Pagani, R. Paparella, P. Pierini
    INFN/LASA, Segrate (MI)
  • D. Kostin, L. Lilje, A. Matheisen, W.-D. Möller, N.J. Walker, H. Weise
    DESY, Hamburg
 
 

In an attempt at demonstrating an average field gradient of 31.5 MV/m as per the design accelerating gradient for ILC, a program called S1-Global is in progress as an international research collaboration among KEK, INFN, FNAL, DESY and SLAC. The design of the S1-G cryomodule began at May 2008 by INFN and KEK. The S1-Global cryomodule was designed to contain eight superconducting cavities from FNAL, DESY and KEK, and to be constructed by joining two half-size cryomodules, each 6 m in length. The module containing four cavities from FNAL and DESY was constructed by INFN. Four KEK cavities have been assembled in the 6 m module which KEK fabricated. All major components were transported to KEK from INFN, FNAL and DESY in December 2009. The assembly of the two 6-m cryomodules started from January 2010 in a collaborative work of FNAL, DESY, INFN and KEK. The construction of the S1-G cryomodule will complete in May, and the cool-down of the S1-G cryomodule is scheduled from June 2010 at the KEK-STF. In this paper, the construction and the cold tests of the S1-Global cryomodule in the worldwide research collaboration will be presented.

 

slides icon

Slides

 
MOP012 Development of L-Band Positron Capture Accelerator System in KEKB Injector Linac klystron, linac, positron, target 73
 
  • S. Matsumoto, M. Akemoto, T. Higo, H. Honma, M. Ikeda, K. Kakihara, T. Kamitani, H. Nakajima, K. Nakao, Y. Ogawa, S. Ohsawa, Y. Yano, K. Yokoyama, M. Yoshida
    KEK, Ibaraki
 
 

In order to improve the positron beam intensity needed for super KEKB project, it was decided to replace the present S-band structures in the positron capture section by a new L-band (1298MHz) accelerator system.  A 2m long TW structure of 12MV/m gradient is now under idesign process while a 40MW klystron will be delivered in summer. After the klystron testing, a single L-band accelerator unit will be constructed for the structure study. The study is scheduled in next spring to operate the structure under solenoidal magnetic focussing field.

 
MOP020 CLIC Two-beam Module Design and Integration alignment, quadrupole, linac, damping 91
 
  • A. Samoshkin, D. Gudkov, G. Riddone
    CERN, Geneva
 
 

The CLIC (Compact LInear Collider) design is based on two-beam acceleration concept developed at CERN, where the RF power is generated by a high current electron-beam (Drive Beam) running parallel to the Main Beam. The Drive Beam is decelerated in special power extraction structures (PETS) and the generated RF power is transferred via waveguides to the accelerating structures (AS). The accelerating gradient must be very high (100 MV/m) to reach the high energy for the electron-positron collisions. To facilitate the matching of the beams, components are assembled in 2-m long modules, of few different types. In some of them the AS are replaced by quadrupoles used for the beam focusing. Their alignment and positioning is made by using the signals from the beam-position monitors (BPM). Special modules are needed in damping region or to carry out dedicated instrumentation and vacuum equipment. The module design and integration has to cope with challenging requirements from the different technical systems. This paper reports the status of the engineering design and reports on the main technical issues.

 
MOP048 Experimental Study of the Surface Resistance of the 141 Mhz Quarter-Wave Resonator at Triumf cavity, ISAC, TRIUMF, monitoring 166
 
  • D. Longuevergne
    UBC & TRIUMF, Vancouver, British Columbia
  • C.D. Beard, A. Grassellino, P. Kolb, R.E. Laxdal, V. Zvyagintsev
    TRIUMF, Vancouver
 
 

The upgrade (Phase II) of the ISAC-II superconducting linac has been completed this spring and has been commissioned. Two spare 141 MHz Quarter-Wave Resonators made of bulk Niobium are available at TRIUMF to lead more specific studies on surface resistance. This opportunity has also been taken to optimize the surface treatment to improve the accelerating field gradient at the operating power level. The aim of the study presented here is to link together several surface treatments (etching depth, 120C baking) and test conditions (Q-disease, 4.2 K and 2K tests) and sequence them in an appropriate order to understand more deeply their dependencies.

 
MOP056 Status of the ALPI Low-beta Section Upgrade cavity, linac, acceleration, rf-amplifier 181
 
  • A. Facco, P. Modanese, F. Scarpa
    INFN/LNL, Legnaro (PD)
  • Y. Ma
    CIAE, Beijing
 
 

The low-beta section of the ALPI linac at Laboratori Nazionali di Legnaro is being upgraded in order to double its energy gain from about 10 MV to 20 MV. This upgrade, performed with a rather limited investment in the background of the standard accelerator activities, is based on the replacement of some rf system components and minor modifications to the cryostats. The cavities, working at 80 MHz, require a 3 dB rf bandwidth of 15 Hz (obtained by means of strong overcoupling) to be locked in the presence of the large Helium pressure fluctuations of ALPI. Their average gradient, although exceeding 6 MV/m at the nominal 7 W power, is presently kept around 3 MV/m during operation, limited by the maximum available rf power in the linac. The ongoing upgrade requires the modification of all low-beta cryomodules to allow new, liquid Nitrogen cooled rf couplers and new, 1 kW amplifiers. A fully equipped prototype cryostat with four, beta=0.047 QWRs has been constructed and tested on line, and operated at 6 MV/m reaching or exceeding all the design goals. The test results will be reported and discussed and the project status will be presented.

 
MOP066 Numerical Modeling of Arcs in Accelerators plasma, laser, acceleration, electron 205
 
  • J. Norem, Z. Insepov, Th. Proslier
    ANL, Argonne
  • S. Mahalingam, S.A. Veitzer
    Tech-X, Boulder, Colorado
 
 

We are developing a model of arcing to explain breakdown phenomena in high-gradient rf systems used for particle accelerators. This model assumes that arcs develop as a result of mechanical failure of the surface due to electric tensile stress, ionization of fragments by field emission, and the development of a small, dense plasma that interacts with the surface primarily through self sputtering and terminates as a unipolar arc capable of producing field emitters with high enhancement factors. We are modeling these mechanisms using Molecular Dynamics (mechanical failure, Coulomb explosions, self sputtering), Particle-In-Cell (PIC) codes (plasma evolution), mesoscale surface thermodynamics (surface evolution), and finite element electrostatic modeling (field enhancements). We believe this model may be more widely applicable and we are trying to constrain the physical mechanisms using data from tokamak edge plasmas.

 
MOP069 Thermal Fatigue of Polycrystalline Copper in CLIC Accelerating Structures: Surface Roughening and Hardening as a Function of Grain Orientation laser, electron, damping, radio-frequency 214
 
  • M. Aicheler
    CERN, Geneva
 
 

The accelerating structures of CLIC will be submitted to 2 x 1010 thermal-mechanical fatigue cycles, arising from Radio Frequency (RF) induced eddy currents, causing local superficial cyclic heating. In order to assess the effects of superficial fatigue, high temperature annealed OFE Copper samples were thermally fatigued with the help of pulsed laser irradiation. They underwent postmortem Electron Backscattered Diffraction (EBSD) measurements andμhardness observations. Previous work has confirmed that surface roughening depends on the orientation of near-surface grains*,**. It is clearly observed that, through thermal cycling, the increase of hardness of a crystallographic direction is related to the amount of surface roughening induced by fatigue. Near-surface grains, oriented [1 0 0] with respect to the surface, exhibiting very low surface roughening, show limited hardening whereas grains oriented in [1 1 0], exhibiting severe surface roughening, show the most severe hardening. Consistently, surface roughening and hardening measured on [1 1 1] direction lie between the values measured for the other directions mentioned.


* Aicheler M et al.; 2010; Submitted to Int. Journal of Fatigue
** Aicheler M; 2009, Journal of Physics: Conference Series, Proceedings of ICSMA15

 
MOP070 Breakdown Studies for the CLIC Accelerating Structures simulation, collider, plasma, target 217
 
  • S. Calatroni, J.W. Kovermann, M. Taborelli, H. Timko, W. Wuensch
    CERN, Geneva
  • A. Descoeudres
    EPFL, Lausanne
  • F. Djurabekova, A. Kuronen, K. Nordlund, A.S. Pohjonen
    HIP, University of Helsinki
 
 

Optimizing the design and the manufacturing of the CLIC RF accelerating structures for achieving the target value of breakdown rate at the nominal accelerating gradient of 100 MV/m requires a detailed understanding of all the steps involved in the mechanism of breakdown. These include surface modification under RF fields, electron emission and neutral evaporation in the vacuum, arc ignition and consequent surface modification due to plasma bombardment. Together with RF tests, experiments are conducted in a simple DC test set-up instrumented with electrical diagnostics and optical spectroscopy. The results are also used for validating simulations which are performed using a wide range of numerical tools (MD coupled to electrostatic codes, PIC plasma simulations) able to include all the above phenomena. Some recent results are presented in this paper.

 
MOP071 The Hot Prototype of the PI-Mode Structure for Linac4 cavity, linac, coupling, proton 220
 
  • F. Gerigk, P. Bourquin, A. Dallocchio, G. Favre, J.-M. Geisser, L. Gentini, J.-M. Giguet, S.J. Mathot, M. Polini, D. Pugnat, B. Riffaud, S. Sgobba, T. Tardy, P. Ugena Tirado, M. Vretenar, R. Wegner
    CERN, Geneva
 
 

The PIMS cavities for Linac4 are made of 7 coupled cells operating in pi-mode at 352 MHz frequency. The mechanical concept is derived from the 5-cell cavities used in the LEP machine, whereas cell length and coupling are adapted for proton acceleration in the range from 50 to 160 MeV. Linac4 will be the first machine to employ this type of cavities for low-beta protons. During the first years of operation the PIMS will be used at low duty cycle as part of the consolidated LHC proton injector complex. It is designed, however, to operate eventually in a high duty cycle (10%) proton injector, which could be used as proton front-end for neutrino or RIB applications. To prepare for the series construction of the 12 PIMS units the first cavity (102 MeV beam energy) has been designed and constructed at CERN, to be used as a hot prototype for RF tests and as a pre-series mechanical unit. In this paper we report on some of the design features, the construction experience, and first measurements.

 
MOP074 High Power Evaluation of X-band High Power Loads klystron, ion, cathode, linac 226
 
  • S. Matsumoto, T. Higo
    KEK, Ibaraki
  • G. Riddone, I. Syratchev, W. Wuensch
    CERN, Geneva
 
 

Several types of X-band high power loads developed for several tens of MW range were designed, fabricated and used for high power tests at X-band facility of KEK. Some of them have been used for many years and some show possible deterioration of RF performance. Recently revised-design loads were made by CERN and the high power evaluation was performed at KEK. In this paper, the main requirements are recalled, together with the design features. The high power test results are analysed and presented.

 
MOP075 Breakdown Characteristics in DC Spark Experiments of Copper Focusing on Purity and Hardness cathode, linear-collider, collider, focusing 229
 
  • K. Yokoyama, S. Fukuda, Y. Higashi, T. Higo, S. Matsumoto
    KEK, Ibaraki
  • S. Calatroni, R. Santiago Kern, W. Wuensch
    CERN, Geneva
  • C. Pasquino
    Politecnico/Milano, Milano
 
 

To investigate the breakdown characteristic related to the differences in purity and hardness, four types of oxygen-free copper (OFC) materials, usual class 1 OFC with/without diamond finish, 7-nine large-grain copper and 6-nine hot-isotropic-pressed copper, were tested with the DC spark test system at CERN. Measurements of beta, breakdown fields and breakdown probability are discussed followed by the surface inspection mostly with SEM on the tested materials.

 
MOP076 An Experimental Investigation on Cavity Pulsed Heating cavity, site, damping, feedback 232
 
  • L. Laurent, V.A. Dolgashev, C.D. Nantista, S.G. Tantawi
    SLAC, Menlo Park, California
  • M. Aicheler, S.T. Heikkinen, W. Wuensch
    CERN, Geneva
  • Y. Higashi
    KEK, Ibaraki
 
 

Cavity pulsed heating experiments have been conducted at SLAC National Accelerator Laboratory in collaboration with CERN and KEK. These experiments were designed to gain a better understanding on the impact of high power pulsed magnetic fields on copper and copper alloys. The cavity is a one port hemispherical cavity that operates in the TE013-like mode at 11.424 GHz. The test samples are mounted onto the endcap of the cavity. By using the TE013 mode, pulsed heating information can be analyzed that is based only on the impact of the peak magnetic field which is much bigger in value on the test sample than on any other place in the cavity. This work has shown that pulsed heating surface damage on copper and copper alloys is dependent on processing time, pulsed heating temperature, material hardness, and crystallographic orientation and that initial stresses occur along grain boundaries which can be followed by pitting or by transgranular microfractures that propagate and terminate on grain boundaries. The level of pulsed heating surface damage was found to be less on the smaller grain samples. This is likely due to grain boundaries limiting the propagation of fatigue cracks.

 
MOP077 Design of RF Feed System for Standing-wave Accelerator Structures cavity, coupling, wakefield, acceleration 235
 
  • J. Neilson, V.A. Dolgashev, S.G. Tantawi
    SLAC, Menlo Park, California
 
 

Typical surface damage in travelling wave accelerator structures occurs on the high field region of the iris. As the damage accumulates the coupling between cavities is affected resulting in changes in the phase shift between cells. This issue can be reduced by use of SW cells that are fed in parallel. RF breakdown is contained to the cell where it originates and the available electromagnetic energy for a given gradient is minimized by the parallel feed. Several schemes[1] have been proposed for parallel fed SW structures. Some of the proposed designs fed several cells from each arm, which reduces the advantage of localizing a RF breakdown to an individual cavity. In addition they use a standing wave in the feed arms which allows coupling between cells. We are proposing a somewhat more complex approach using a directional coupler on each cell and serpentine waveguide connection between couplers. This design approach isolates the cells and gives an individual rf feed to each cell resulting in the maximum increase in the operational robustness of the accelerator structure.


1. O. N. Brezhnev, P. V. Logatchev, V. M. Pavlov, O. V. Pirogov, S. V. Shiyankov,' Parallel-Coupled Accelerating Structures', Proceedings of LINAC 2002, Gyeongju, Korea, pg 215-217

 
MOP081 The PITZ CDS Booster Cavity RF Tuning and Start of Conditioning cavity, booster, coupling, electron 241
 
  • V.V. Paramonov, A. Naboka
    RAS/INR, Moscow
  • A. Donat, L. Jachmann, W. Köhler, M. Krasilnikov, J. Meissner, D. Melkumyan, M. Otevrel, B. Petrosyan, J. Schultze, F. Stephan, G. Trowitzsch, R.W. Wenndorff
    DESY Zeuthen, Zeuthen
  • K. Flöttmann
    DESY, Hamburg
  • D. Richter
    HZB, Berlin
 
 

The DESY PITZ booster cavity, based on the Cut Disk Structure (CDS), is completed in construction. The L-band normal conducting cavity is intended to operate with accelerating rate up to 12.5 MV/m and RF pulse length up to 800 mks to increase the electron bunch energy in the PITZ facility at 20 MeV. The cavity was vacuum conditioned to reduce the out-gassing rate for operation in the facility with photo cathodes. The cavity is mounted in the PITZ tunnel and RF conditioning is started. The results of RF tuning before and after cavity brazing, together with first results of conditioning, are presented.

 
MOP097 Design of a High Energy Beam Stop for Spiral2 linac, target, neutron, beam-losses 283
 
  • E. Schibler, J.-C. Ianigro
    IN2P3 IPNL, Villeurbanne
  • J. Morales, N. Redon
    UCBL, Villeurbanne
  • L. Perrot
    IPN, Orsay
 
 

The driver accelerator of the Spiral2 facility will deliver deuteron (40MeV) and proton (33MeV) beams with current up to 5mA and heavy ion (14.5MeV/n) beams up to 1mA. At the very end of the LINAC, the main Beam Stop will have to withstand a peak power of 200kW for deuterons, with an associated power density from 120W/mm2 to more than 700W/mm2. These challenging specifications impose the design of a new high efficiency Beam Stop that has been nicknamed SAFARI (French acronym of Optimized Beam Stop Device for High Intensity Beams). From the beam characteristics and activation constraints, we proposed and developed a complete design. We will present this original design and the different studies and optimizations which have been done: The Beam Stop shape marries to the beam characteristics in order to smooth for the best power density and improve thermo-mechanical behaviour under nominal and critical beams. Cooling system is directly machined from Beam Stop blocks. Optimization by various fluid studies and calculations led us to a new high efficiency counter-current water cooling system. We then compare calculated behaviour with first results obtained on our recent functional mock-up

 
MOP098 Electrode Design Improvements in the SPIRAL2 Single Bunch Selector simulation, impedance, single-bunch, linac 286
 
  • P. Balleyguier
    CEA, Bruyères-le-Châtel
  • P. Bertrand, M. Di Giacomo, G. Fremont, M. Michel
    GANIL, Caen
 
 

The high current driver accelerator of the SPIRAL 2 project uses a single-bunch selector to reduce the bunch repetition rate at the experimental target. The device works at almost 1 MHz and handles fast RF pulses of 18 ns with transient times shorter than 6 ns. The first electrode prototype, built in the framework of the Eurisol DS project, was used for thermal and RF tests and didn't show correct delay and matching. The paper describes the studies to improve these two important issues and the results of thermal tests

 
MOP104 Studies on the Thermo-mechanical Behavior of the CLIC Two-beam Module RF-structure, linac, quadrupole, alignment 304
 
  • R.J. Nousiainen, K. Osterberg
    HIP, University of Helsinki
  • G. Riddone
    CERN, Geneva
 
 

To fulfill the mechanical requirements set by the luminosity goals of the CLIC collider, currently under study, the 2-m two-beam modules, the shortest repetitive elements in the main linac, have to be controlled at micrometer level. At the same time these modules are exposed to variable high power dissipation while the accelerator is ramped up to nominal power as well as when the mode of CLIC operation is varied. This will result into inevitable temperature excursions driving mechanical distortions in and between different module components. A FEM model is essential to estimate and simulate the fundamental thermo-mechanical behavior of the CLIC two-beam module to facilitate its design and development. Firstly, the fundamental thermal environment is created for different RF components of the module. Secondly, the first thermal and structural contacts for adjacent components as well as idealized kinematic coupling for the main module components are introduced. Finally, the thermal and structural results for the studied module configuration are presented showing the fundamental thermo-mechanical effects of primary CLIC collider operation modes.

 
MOP105 Preparation of Adjustable Permanent Magnet Quadrupole Lens for Beam Test at ATF2 multipole, quadrupole, permanent-magnet, coupling 307
 
  • S. Ushijima, H. Fujisawa, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • M. Masuzawa, T. Tauchi
    KEK, Ibaraki
 
 

A permanent magnet quadrupole lens with continuously adjustable strength originally designed by Gluckstern was fabricated for a final focus. It consists of five PMQ discs that rotate on their axis, where odd and even numbered discs rotate oppositely but with the same absolute angle. By setting their lengths appropriately, the coupling between x and y components can be minimized. In order to reduce multipole components higher than quadrupole, we adjust positions of magnet wedge pairs. At the same time we improve differences between the magnetic center and the mechanical center of the PMQ discs by measuring harmonics of fields in magnets. In order to carry out the beam test, a high precision movable table for the lens system is also fabricated. This table can evacuate the lens system from the beam line completely without vacuum breaking, which should ease the evaluation of the system at decreased strength region.

 
MOP106 Implementation of Multilayered Conductor Structures on RF Cavity Surfaces cavity, resonance, linac, controls 310
 
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
 
 

Multilayered conductor structures on RF cavity surfaces have been discussed these years. Although a real implementation was succeeded on a coaxial cavity at room temperature by measuring Q-value, it may not be a practical example. Application of the multilayered conductor structure on superconducting cases came out recently and is studied by some groups. Possible thoughts on the further implementation at room temperature will be discussed including a consideration on the superconducting case.

 
MOP114 Confirmation of Leak Tightness of the Mo Sealing in Superfluid Helium cavity, SRF, impedance, pick-up 331
 
  • K. Saito, F. Furuta
    KEK, Ibaraki
  • T. Konomi
    Nagoya University, Nagoya
 
 

MO sealing developed by Prof. H. Matsumoto in KEK and his collaborator M. Ohotsuka has been successfully applied to SRF cavities. Its leak ratio is smaller than 3·10-8 Pam3/s or much better in the superfluid Helium, which is the allowed level to successfully measure the cavity performance for more than 3 hours at 2K. Tightening torque is 15Nm and the bolt material is SUS304 (JIS). Titanium is usable as cavity flange material. Copper looks better than pure Aluminium as the gasket material. We have observed an additional residual surface resistance about 5nΩ Zero impedance characteristics of the MO sealing is a remained issue. In this paper we report the results in detail.

 
TU301 RFQ for CW Applications rfq, linac, neutron, ion 372
 
  • A. Pisent
    INFN/LNL, Legnaro (PD)
 
 

CW RFQs requires solid design since they have to deal with design challenges and technological limitations. This talk overviews the recent performances of some of the most powerful RFQ cavities. Development, industrialisation and commissioning results of CW RFQ are describe and discussed, with recent update on two emblematic designs: IFMIF and TRASCO.

 
TUP039 The New cw RFQ Prototype rfq, simulation, linac, DTL 488
 
  • U. Bartz, A. Schempp
    IAP, Frankfurt am Main
 
 

Abstract A short RFQ prototype was built for tests of high power RFQ structures. We will study thermal effects and determine critical points of the design. HF-Simulations with CST Microwave Studio and measurements were done. The RF-Tests with continues power of 20 kW/m were finished successfully. Simulations of thermal effects with ALGOR are on focus now. First results and the status of the project will be presented.

 
TUP042 Progress in the Fabrication of the RFQ Accelerator for the CERN Linac4 rfq, linac, quadrupole, cavity 497
 
  • C. Rossi, P. Bourquin, J.-B. Lallement, A.M. Lombardi, S.J. Mathot, D. Pugnat, M.A. Timmins, G. Vandoni, M. Vretenar
    CERN, Geneva
  • M. Desmons, A. France, Y. Le Noa, J. Novo, O. Piquet
    CEA, Gif-sur-Yvette
 
 

The construction of Linac4, the new 160 MeV CERN H- injector, has started with the goal of improving the LHC injection chain from 2015 with a new higher energy linac. The low energy front end of Linac4 is based on a 352 MHz, 3-m long Radiofrequency Quadrupole (RFQ) accelerator. The RFQ accelerates the 70 mA, 45 keV H- beam from the RF source to the energy of 3 MeV. The fabrication of the RFQ has started at CERN in 2009 and is presently in progress, aiming at the completion of the full structure by early 2011. The RFQ consists of three modules, one meter each; the fabrication alternates machining phases and stress relief cycles, for copper stabilization. Two brazing steps are required: one to assemble the four parts composing a module and a second one to install the stainless steel flanges. In order to monitor that the tight mechanical and alignment budget is not exceeded, metrology measurements at the CERN workshop and RF bead-pull measurements are performed during the fabrication process. In this paper we report results obtained during the machining and the assembly of the first two modules of the Linac4 RFQ and data produced by RF measurements performed during their fabrication.

 
TUP046 Development of the 3MeV RFQ for the Compact Pulsed Hadron Source at Tsinghua University rfq, cavity, DTL, hadron 509
 
  • Q.Z. Xing, Y.J. Bai, J.C. Cai, X. Guan, X.W. Wang, J. Wei, Z.F. Xiong, H.Y. Zhang
    TUB, Beijing
  • J.H. Billen, L.M. Young
    LANL, Los Alamos, New Mexico
  • W.Q. Guan, Y. He, J. Li
    NUCTECH, Beijing
  • J. Stovall
    CERN, Geneva
 
 

We present, in this paper, the physics and mechanical design of a Radio Frequency Quadrupole (RFQ) accelerator for the Compact Pulsed Hadron Source (CPHS) at Tsinghua University. The 3-meter-long RFQ will accelerate protons from 50 keV to 3 MeV at an RF frequency of 325 MHz. In the physics design we have programmed the inter-vane voltage as a function of beam velocity, to optimize the performance of the RFQ, by tailoring the cavity cross section and vane-tip geometry as a function of longitudinal position while limiting the peak surface electric field to 1.8 Kilpatrick. There will be no Medium-Energy-Beam-Transport (MEBT) following the RFQ. The focusing at the high energy end of the RFQ and at the entrance of the DTL have been tailored to provide continuous restoring forces independent of the beam current. In simulations of the proton beam in the RFQ, using the code PARMTEQM, we observe transmission exceeding 97%. The RFQ is mechanically separated into three sections to facilitate machining and brazing. We have machined a test section and the final RFQ accelerator is now under construction. We will describe the status of the RFQ system in this paper.


* K. R. Crandall et al., RFQ Design Codes, LA-UR-96-1836.

 
TUP048 Experiences with the Fermilab HINS 325 MHz RFQ rfq, ion, proton, ion-source 515
 
  • R.C. Webber, T.N. Khabiboulline, R.L. Madrak, G.V. Romanov, V.E. Scarpine, J. Steimel, D. Wildman
    Fermilab, Batavia
 
 

The Fermilab High Intensity Neutrino Source program has built and commissioned a pulsed 325 MHz RFQ. The RFQ has successfully accelerated a proton beam at the design RF power. Experiences encountered during RFQ conditioning, including the symptoms and cause of a run-away detuning problem, and the first beam results are reported.

 
TUP050 Vacuum Brazing of the New RFQ for the J-PARC Linac cavity, rfq, linac, controls 521
 
  • T. Morishita, K. Hasegawa, Y. Kondo
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • H. Baba, Y. Hori, H. Kawamata, H. Matsumoto, F. Naito, Y. Saito, M. Yoshioka
    KEK, Ibaraki
 
 

The J-PARC RFQ (length 3.1m, 4-vane type, 324 MHz) accelerates a negative hydrogen beam from 0.05MeV to 3MeV toward the following DTL. We started the preparation of a new RFQ as a backup machine. The new cavity is divided by three unit tanks in the longitudinal direction. The unit tank consists of two major vanes and two minor vanes. A one-step vacuum brazing of a unit tank has been chosen to unite these four vanes together with the flanges and ports. In this presentation we will report the results of the vacuum brazing with the dimension accuracy and an RF property.

 
TUP052 Preliminary Concept for the Project X CW Radio-frequency Quadrupole (RFQ) rfq, cavity, quadrupole, controls 524
 
  • S.P. Virostek, M.D. Hoff, D. Li, J.W. Staples
    LBNL, Berkeley, California
 
 

Project X is a proposed multi-MW proton facility at Fermi National Accelerator Laboratory. It is the key element for future accelerator complex development intended to support world-leading High Energy Physics (HEP) programs. The Project X front-end would consist of H- ion source(s), a low-energy beam transport (LEBT), radio-frequency quadrupole (RFQ) accelerator(s), and a medium-energy beam transport (MEBT). To support current and future HEP experiments at Fermilab, a CW RFQ is required. One of the chosen RFQ designs has a resonant frequency at 325 MHz. The RFQ provides bunching of the 10 mA H- beam with acceleration up to 2.5 MeV and wall power losses of less than 250 kW. LBNL is currently developing the early designs for various components in the Project X front-end. The RFQ design concept and the preliminary RF and thermal analyses are presented here.

 
TUP055 3D Aspects of the IFMIF-EVEDA RFQ: Design and Optimization of the Vacuum Grids, of the Slug Tuners and of the End Cell rfq, simulation, cavity, insertion 533
 
  • A. Palmieri, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD)
  • F. Scantamburlo
    INFN- Sez. di Padova, Padova
 
 

In order to attain the stringent goals that assure the required performances of the IFMIF-EVEDA RFQ in terms of field uniformity, Q-value and RF-induced heat removal capability, the study of the 3D details of the cavity is particularly important. In this paper the main issues regarding the design of the slug tuners, cavity ends and vacuum grids are addressed, as well as the related optimization procedure.

 
TUP057 Completion of the Fabrication of TRASCO RFQ dipole, rfq, cavity, quadrupole 536
 
  • E. Fagotti, M. Comunian, F. Grespan, A. Palmieri, A. Pisent, C. Roncolato
    INFN/LNL, Legnaro (PD)
 
 

The TRASCO RFQ will accelerate the 40 mA cw proton beam from the ion source to the energy of 5 MeV, for the production of intense neutron fluxes for interdisciplinary applications. The RFQ is composed of six modules of 1.2 m each, assembled by means of ultra high vacuum flanges. The structure is made of OFE copper and is fully brazed. RFQ modules were manufactured in CINEL Scientific Instruments S.r.l. while chemical treatments and brazing were done at CERN. This paper covers the brazing results of the last four modules and low power tests performed for preparation to the high power test of the first electromagnetic segment.

 
TUP058 3D Thermo Mechanical Study on IFMIF-EVEDA RFQ rfq, simulation, resonance, cavity 539
 
  • F. Scantamburlo, A. Pepato
    INFN- Sez. di Padova, Padova
  • M. Comunian, E. Fagotti, F. Grespan, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD)
 
 

In the framework of the IFMIF/EVEDA project, the RFQ is a 9.8 m long cavity, with very challenging mechanicals specifications. In the base line design, the accelerator tank is composed of 18 modules that are flanged together. An RFQ prototype, composed of 2 modules with a reduced length, aimed at testing all the mechanical construction procedure is under construction. In this paper, the thermo-mechanical study by means of 2D thermo structural and 3D fluid-thermal-structural simulations will be described. The measurements made with a cooling water circuit on a part of the RFQ prototype and the comparison with fluid thermal simulation will be reported.

 
TUP061 Development of a 324 MHz Drift Tube Linac for CSNS DTL, quadrupole, linac, focusing 548
 
  • X. Yin, S. Fu, K.Y. Gong, L. Liu, J. Peng, H. Song, Y.C. Xiao
    IHEP Beijing, Beijing
 
 

The CSNS is a spallation neutron research facility being built at Dongguan in Guangdong Province [1]. The 324MHz Alvarez-type Drift Tube Linac (DTL) will be used to accelerate the H- ion beam from 3 to 80.0 MeV with peak current 15mA. The R&D of a prototype structure at the low energy section of DTL is taking place at IHEP. The first unit tank 2.8m in length for the energy range from 3 to 8.88 MeV and 28 drift tubes containing electromagnetic quadrupoles are developed. This paper introduces the R&D status of the tank and 28 drift tubes. The measurement results of the focusing quadrupoles are also presented.

 
TUP066 Production Design of the Drift Tube Linac for the CERN Linac4 cavity, DTL, linac, focusing 560
 
  • S. Ramberger, P. Bourquin, Y. Cuvet, A. Dallocchio, G. De Michele, F. Gerigk, J.-M. Giguet, J.-B. Lallement, A.M. Lombardi, E. Sargsyan, M. Vretenar
    CERN, Geneva
 
 

The design of the Drift Tube Linac (DTL) for the new linear accelerator Linac4 at CERN has been made ready for production: H–ion beams of up to 40 mA average pulse current are to be accelerated from 3 to 50 MeV by three RF tanks operating at 352.2 MHz and at duty cycles of up to 10%. In order to provide a margin for longitudinal matching from the chopper line, the longitudinal acceptance has been increased. The synchronous phase starts at -35° in tank1 and ramps linearly to -24° over the tank while it went from -30° to -20° in the previous design. The accelerating gradient has been lowered to 3.1 MV/m in Tank1 and increased to 3.3 MV/m in Tank2 and Tank3 for a better distribution of RF power between tanks that is compatible with a mechanical design. To make the transverse acceptance less sensitive to alignment and gradient errors, the focusing scheme has been changed to FFDD over all 3 tanks. Design features that were demonstrated in earlier reports have been improved for series production. Results of high power RF tests of the DTL prototype equipped with PMQs are reported that test the voltage holding in the first gaps in presence of magnetic fields.

 
TUP068 Operation Experiences of the DTL/SDTL for the J-PARC DTL, acceleration, linac, focusing 566
 
  • T. Ito
    JAEA/LINAC, Ibaraki-ken
  • C. Kubota, F. Naito, K. Nanmo
    KEK, Ibaraki
 
 

The operation of the DTL and the Separated type DTL (SDTL) of the J-PARC started in November 2006. The DTL and SDTL are currently running stable and accelerating the beam. For stable operation of the DTL/SDTL, We have done maintenance of the equipments, like an RF coupler, and improved the troubles. In this paper, we will present the operation experiences of the DTL and the SDTL.

 
TUP075 Residual Gas Pressure Dependence of Beam Loss beam-losses, linac, radiation, ion 587
 
  • A. Miura, M. Ikegami
    JAEA/J-PARC, Tokai-mura
  • H. Sako
    JAEA, Ibaraki-ken
  • G.H. Wei
    KEK/JAEA, Ibaraki-Ken
 
 

Residual gas in beam transport line essentially affects the beam loss and residual radiation on the accelerator. J-PARC linac is usually operated under 1.0 ·10-6 to 1.0 ·10-5 Pa in SDTL and A0BT sections. In this situation, no serious beam loss was observed during the beam operation. In future development of J-PARC linac, because the peak beam energy and output will be increased, it is getting more serious problem. Before the development, it is important to understand a cause of beam loss and relation between beam loss and residual gas pressure. We measured beam loss at the normal and worse vacuum condition in both SDTL and A0BT sections. The result indicates that the beam loss depends on the residual gas pressure and position where the beam loss occurs is about 20 to 30 meter downstream. This suggests the optimum position for installation of vacuum system to minimize the beam loss. In this paper, we describe the experimental result and its discussions. In addition, the cause of the beam loss is considered to be a stripping from negative hydrogen ions to neutral hydrogen atoms. This mechanism is also discussed in this paper.

 
TUP082 Cryomodule Tests of Tesla-like Cavities in S1-Global for ILC cavity, cryomodule, coupling, linac 602
 
  • E. Kako, H. Hayano, Y. Kojima, T. Matsumoto, H. Nakai, S. Noguchi, N. Ohuchi, M. Satoh, T. Shishido, K. Watanabe, Y. Yamamoto
    KEK, Ibaraki
 
 

Cryomodule tests of four Tesla-like superconducting cavities is under preparation in the S1-Global project at KEK. Assembly of the cryomodule was started in January 2010, and the installtion in the STF tunnel was completed in April. First cool-down tests are scheduled in June. The low rf power tests of the Tesla-like cavities will be carried out in July. The high rf power tests are scheduled between September and December, 2010.

 
TUP085 Beam Cross Section Monitor for INR Linac ion, linac, proton, neutron 605
 
  • P.I. Reinhardt-Nickoulin, A. Feschenko, S.A. Gavrilov, I.V. Vasilyev
    RAS/INR, Moscow
 
 

The monitor to measure a transverse cross section of the accelerated beam has been developed and implemented in INR Linac. Operation of the monitor is based upon utilization of residual gas ionization. Ion flux cross section after extraction of the ions from the beam line by electrostatic field and subsequent energy separation in electrostatic analyzer reproduces a transverse cross section of the accelerator beam. Aμchannel plate intensifier followed by a phosphor screen is used to observe ion cross section. The image is optically transmitted to a CCD camera installed remotely and shielded for protection. The monitor enables to observe beam cross section, beam profiles and beam position, as well as their evolution in time within a wide range of beam intensities and energies. Monitor operation and parameters are described. Some experimental results are presented.

 
TUP090 Development of a Bunch Length Detector electron, optics, proton, resonance 617
 
  • J.Y. Kim, H.-C. Bhang, D.G. Kim
    SNU, Seoul
  • J.-W. Kim
    NCC, Korea, Kyonggi
 
 

A bunch length detector has been designed and constructed, which can measure current distributions inside the beam bunch. The device measures secondary electrons that are emitted when the beam hits a negatively biased thin target wire. Two main components of the device are an rf deflector to deflect secondary electrons vertically in correlation with the rf time of the beam bunch, and microchannel plate to detect the electrons after spatial discrimination. Rf properties of the rf deflector were first numerically analyzed, and a full-scale cold model was built and tested using a network analyzer. Microchannel plate detector was tested using a beta-emitting isotope source. The electron optics were calculated to design the structure of the detector, and the actual detector will soon be constructed and tested using a cw proton beam from a cyclotron.

 
TUP105 A Carbon Foil Stripper for FRIB ion, target, linac, heavy-ion 659
 
  • F. Marti, S. Hitchcock, O.K. Kester, J.C. Oliva
    NSCL, East Lansing, Michigan
 
 

The US Department of Energy Facility for Rare Isotope Beams (FRIB) at Michigan State University includes a heavy ion superconducting linac capable of accelerating all ions up to uranium with energies higher than 200 MeV/u and beam power up to 400 kW. At an energy of approximately 17 MeV/u we plan to strip the beam to reduce the voltage needed in the rest of the linac to achieve the final energy. The design of the stripper is a challenging problem due to the high power deposited (approximately one kW) in the stripper media by the beam in the small beam size. One of the options being considered is a carbon foil stripper. We have developed a test chamber to study the thermal mechanical properties of different stripping media candidates (amorphous carbon, graphene, diamond). This chamber utilizes an electron beam to deposit powers similar to what the FRIB stripper will see in operation. The thermo-mechanical studies are a necessary condition but not sufficient. The effect of radiation damage must also be studied. We have utilized heavy ions (Pb) from the K500 cyclotron to study this issue. We present in this paper a summary of the requirements and the status of the studies.

 
TUP106 Development of Stripper Options for FRIB plasma, ion, linac, electron 662
 
  • F. Marti
    NSCL, East Lansing, Michigan
  • A. Hershcovitch, P. Thieberger
    BNL, Upton, Long Island, New York
  • Y. Momozaki, J.A. Nolen, C.B. Reed
    ANL, Argonne
 
 

The US Department of Energy Facility for Rare Isotope Beams (FRIB) at Michigan State University includes a heavy ion superconducting linac capable of accelerating all ions up to uranium with energies higher than 200 MeV/u and beam power up to 400 kW. To achieve these goals with present ion source performance it is necessary to accelerate simultaneously two charge states of uranium from the ion source in the first section of the linac. At an energy of approximately 17 MeV/u we plan to strip the uranium beam to reduce the voltage needed in the rest of the linac to achieve the final energy. Up to five different charge states are planned to be accelerated simultaneously after the stripper. The design of the stripper is a challenging problem due to the high power deposited (approximately one kW) in the stripper media by the beam in a small spot. To assure success of the project we have established a research and development program that includes several options: carbon or diamond foils, liquid lithium films, gas strippers and plasma strippers. We present in this paper a summary of the requirements and a general description of the status of the different options.

 
TH103 Development and Future Prospects of Rf Sources for Linac Applications klystron, linac, cavity, collider 717
 
  • E. Jensen
    CERN, Geneva
 
 

This talk gives an overview of recent results and future prospects on RF sources for linac applications, including klystrons, magnetrons and modulators.

 
THP013 Testing of Niobium Material for the European XFEL Pre-series Production niobium, cavity, controls, superconductivity 788
 
  • A. Brinkmann, M. Lengkeit, W. Singer, X. Singer
    DESY, Hamburg
 
 

For the XFEL cavity production a rather large quantity of niobium sheets from partially new niobium vendors has to be delivered according to the XFEL Cavity Specification. It is of high importance that the material monitoring of this niobium has to be done within the production process to ensure a high performance of the cavities. The quality assurance program includes electrical measurements, mechanical, structural and chemical material analysis. For the surface investigations two eddy current scanning devices have been fabricated on the basis of our specification and experience. The scanning process and evaluation of test result can now be done in a few minutes per sheet. We describe the material test methods and the scanning machine. Measured results of the pre-series niobium will be compared to older material tests results.

 
THP022 Design Optimisation of the EURISOL Driver Low-beta Cavities cavity, linac, TRIUMF, electron 806
 
  • Y. Ma
    CIAE, Beijing
  • A. Facco, F. Scarpa
    INFN/LNL, Legnaro (PD)
 
 

The low-beta section of the EURISOL driver linac is based on 176 MHz superconducting half-wave resonators (HWR) with beta=0.09 and 0.16. These cavities are an evolution of the 352 MHz ones, previously developed in the same framework, having similar dimensions and components except for their length and rf frequency. They are characterized by a double wall, all niobium structure with light weight, good mechanical stability and a side tuner cooled by thermal conduction. The new 176 MHz Half-wave cavities design includes a removable tuner, which allows to improve tuning range, mechanical stability and accessibility to the cavity interior. A beta=0.13 cavity, which could be suitable for linacs like the SARAF one, was also designed with the same concepts. Design characteristics and expected performance will be presented and discussed.

 
THP026 Superconducting RF Cavity Production Processing and Testing at Fermilab cavity, cryomodule, SRF, diagnostics 815
 
  • C.M. Ginsburg, M.S. Champion, J.P. Ozelis, A.M. Rowe
    Fermilab, Batavia
  • M.P. Kelly
    ANL, Argonne
 
 

The superconducting RF (SRF) cavity production program at Fermilab supports 9-cell 1.3 GHz cavity qualification and preparation for assembling cavities into cryomodules, in support of Project X, ILC, or other future projects. Cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic qualification tests which typically include performance diagnostics. The overall goals of the program, facilities and accomplishments are described.

 
THP038 Ultimate-Gradient Srf Test Cavity and Low Loss Tangent Measurements in Ultra Pure Sapphire cavity, coupling, niobium, collider 842
 
  • P.M. McIntyre, N. Pogue
    Texas A&M University, College Station, Texas
  • C.E. Reece
    JLAB, Newport News, Virginia
 
 

A 1.3 GHz superconducting test cavity is being developed to test wafer samples of advanced SRF materials with surface fields at or beyond the Nb BCS limit. The mushroom-shaped Nb cavity is dielectric-loaded, with a hemisphere of high-purity sapphire located just above a detachable end flange. Wafer samples are mounted on the end flange. The cavity is operated in the TE011 mode, so no currents flow from the end flange to the side walls. Fields are concentrated on the wafer sample so that the peak surface field there is 4 times greater than anywhere else on the cavity walls. The loss tangent of ultrapure sapphire is critical to the performance of the test cavity. A separate first experiment has been conducted in a special 1.8 GHz cavity to measure this loss tangent in L band as a function of temperature for the first time. Results of the measurement and the final design of the ultimate-gradient test cavity will be presented.

 
THP040 Superconducting Resonator and Cryomodule Production for Ion Linacs at Michigan State University cryomodule, linac, solenoid, focusing 848
 
  • C. Compton, J. Bierwagen, S. Bricker, J. DeLauter, K. Elliott, W. Hartung, M. Hodek, J.P. Holzbauer, M.J. Johnson, O.K. Kester, F. Marti, D. R. Miller, S.J. Miller, D. Norton, J. Popielarski, L. Popielarski, N. Verhanovitz, K. Witgen, J. Wlodarczak, R.C. York
    NSCL, East Lansing, Michigan
 
 

Superconducting quarter-wave resonators, half-wave resonators, and cryomodules are being prototyped and fabricated at Michigan State University (MSU) for two ion linac projects. The 3 MeV per nucleon reaccelerator project (ReA3) is under construction as an upgrade to MSU's nuclear physics research program. ReA3 requires 15 production resonators, housed in three cryostats, with commissioning to begin in 2010. In parallel, MSU is engaged in a future laboratory upgrade, the Facility for Rare Isotope Beams (FRIB). FRIB requires a 200 MeV per nucleon driver linac, which includes 344 resonators (four different betas) housed in 52 cryomodules. FRIB development work is underway, with the prototyping of a FRIB cryomodule planned for early 2011. In addition, the acquisition strategy for FRIB resonators and cryomodules is being finalized, and the technology transfer program is being initiated. The status of the resonator and cryomodule production effort will be presented in this paper, including an overview of the acquisition strategy for FRIB.

 
THP041 An Update on the Study of High-Gradient Elliptical SRF Cavities at 805 MHz for Proton and Other Applications cavity, SRF, electron, superconducting-cavity 851
 
  • T. Tajima, W.B. Haynes, F.L. Krawczyk, M.A. Madrid, R.J. Roybal, E.I. Simakov
    LANL, Los Alamos, New Mexico
  • W.A. Clemens, K. Macha, R. Manus, R.A. Rimmer, L. Turlington
    JLAB, Newport News, Virginia
 
 

An update on the study of 805 MHz elliptical SRF cavities that have been optimized for high gradient will be presented. An optimized cell shape, which is still appropriate for easy high pressure water rinsing, has been designed with the ratios of peak magnetic and electric fields to accelerating gradient being 3.75 mT/(MV/m) and 1.82, respectively. A total of 3 single-cell cavities have been fabricated and tested with various conditions. In addition, a 6-cell cavity design has been completed including multipacting simulations.

 
THP051 Retrospective on Fundamental Power Couplers for the Spallation Neutron Source at Oak Ridge cavity, cryomodule, neutron, superconducting-cavity 866
 
  • M. Stirbet
    JLAB, Newport News, Virginia
 
 

As of September 2009 a sustainable 1 MW in beam power was achieved at Oak Ridge, continuing to make SNS the highest energy-pulsed neutron source available for scientific research worldwide. This paper evaluates the FPCs designed and built at JLAB for the SNS project, emphasizing their performance and related issues addressed during prototyping, qualification on the RF power test stand at room temperature, superconducting cavity commissioning and successful but challenging operation with beam for more than 5 years.


Mircea. Stirbet@jlab.org

 
THP057 A New Fast Tuning System for ATLAS Intensity Upgrade Cryomodule cavity, cryomodule, SRF, linac 884
 
  • M.P. Kelly, S.M. Gerbick, M. Kedzie, P.N. Ostroumov, S.I. Sharamentov
    ANL, Argonne
 
 

An upgrade project is underway at the ATLAS superconducting RF (SRF) heavy-ion linac at Argonne National Laboratory to dramatically increase the intensity of both stable beams and short-lived isotopes from the CARIBU fission source. The upgrade includes a new normal conducting RFQ injector and an SRF cryomodule consisting of seven high-performance 72.75 MHz quarter-wave cavities optimized for ions with velocity of 0.077c. The module will deliver more than 17.5 MV of accelerating potential over 5 meters and replace three existing split-ring cryomodules. Key to this performance will be a new cavity fast tuning system that replaces the voltage-controlled-reactance (VCX) fast tuner. The recently completed ATLAS upgrade cryomodule installed in June 2009 has a real estate gradient of 14.5 MV over 4.6 meters, the highest for any low-beta cryomodule, however, performance is 40% less than could be achieved without the VCX. As such, the VCX is being replaced with a high-power rf coupler and a fast piezoelectric-based tuner to be used together to control the cavity phase. Cold test results of a prototype power coupler and piezo-tuner are presented here.

 
THP069 Stripping of H-minus Beams by Residual Gas in the Linac at the Los Alamos Neutron Science Center proton, linac, ion, background 908
 
  • R.C. McCrady
    LANL, Los Alamos, New Mexico
 
 

The linear accelerator at the Los Alamos Neutron Science Center (LANSCE) accelerates both protons and H-minius ions using Cockroft-Walton-type injectors, a drift-tube linac and a side-coupled linac. The vacuum is maintained in the range of 10-6 to 10-7 Torr; the residual gas in the vacuum system results in some stripping of the electrons from the H-minus ions resulting in beam spill and the potential for unwanted proton beams delivered to experiments. We have measured the amount of fully-stripped H-minus beam (protons) that ends up at approximately 800MeV in the beam switchyard at LANSCE using image plates as very sensitive detectors. I will present the motivation for the measurement, the measurement technique and results, and calculations to model the results and possible mitigation schemes.

 
THP071 ExB Chopper System for High Intensity Proton Beams high-voltage, proton, simulation, dipole 914
 
  • C. Wiesner, L.P. Chau, H. Dinter, M. Droba, N.S. Joshi, O. Meusel, I. Müller, U. Ratzinger
    IAP, Frankfurt am Main
 
 

High intensity beams which are increasingly needed for a variety of applications pose new challenges for beam chopping. An ExB chopper system for proton beams of up to 200 mA and repetition rates of up to 250 kHz is under development at IAP. It will be tested and installed in the low energy section of the Frankfurt Neutron Source FRANZ at beam energies of 120 keV. The chopper consists of a static magnetic dipole field and a pulsed electric field in a Wien filter-type ExB configuration. The electric field temporarily compensates the magnetic deflection thus creating a proton pulse in forward direction, while the duty cycle of the electric field is minimized in order to reduce the risk of voltage breakdowns. Downstream of the chopper a septum will be used to separate the beams ensuring dumping outside the transport line in order to avoid uncontrolled power deposition and the resultant production of secondary particles. Numeric field optimizations and beam simulations including secondary electron effects are presented. Measurements of the high voltage pulse generator based on MOSFET technology and capable of generating 12 kV at 250 kHz as well as beam deflection experiments are shown.

 
THP075 Laser-Beam Propagation Characteristics in New Laser-Based Alignment System at the KEKB Injector Linac laser, alignment, linac, optics 917
 
  • T. Suwada, M. Satoh
    KEK, Ibaraki
 
 

A new laser-based alignment system is under development in order to precisely align accelerator components along an ideal straight line at the KEKB injector linac towards the next generation of B-factories. A new laser optics generating so-called Airy beam has been developed for the laser-based alignment system. The laser-beam propagation characteristics both in vacuum and at atmospheric pressure have been systematically investigated at a 82-m-long straight section of the injector linac. The results in the measured propagation characteristics are in good agreement with those analyzed on the basis of theoretical analysis in Gaussian laser propagation. In this report the experimental study is described in detail along with the basic design and recent development of the new laser-based alignment system.

 
THP081 The Stretched Wire Method: A Comparative Analysis Performed by Means of the Mode Matching Technique cavity, impedance, coupling, scattering 932
 
  • M. Panniello, V.G. Vaccaro
    Naples University Federico II and INFN, Napoli
  • M.R. Masullo
    INFN-Napoli, Napoli
 
 

The Wire Method for Coupling Impedance evaluations is quite appealing for the possibility to make bench measurements on the Device Under Test (DUT). However, it is not entirely reliable because the stretched wire perturbs the boundary conditions, introducing a TEM wave that has a zero cut off frequency. We expect that, for frequencies smaller than the cutoff one, this behaviour produces an additional power loss which drastically lowers the high Q resonances of DUT. Above cutoff frequency, the impact of the stretched wire is not as dramatic as below cutoff. The Mode Matching Technique will be used to simulate the measurement with the Wire Method. In this way one may get a result which is not affected by the errors intrinsic of experimental measurements. The same method will be used to get, according to its standard definition, the Coupling Impedance of the real structure. The two results will be compared in order to define the frequency ranges in which they agree or disagree. As expected large discrepancies appear below cutoff frequency, while above cutoff, for certain ranges of parameters, an agreement is found.

 
THP104 S-Band Photocathode Gun with a 1 kHz Repetition Rate gun, cathode, simulation, coupling 974
 
  • J.H. Han, D. Brice, M.P. Cox, H.C. Huang, S.A. Pande
    Diamond, Oxfordshire
 
 

Photocathode RF guns are widely used as injectors for accelerators requiring very high quality beams such as free electron lasers and linear colliders and recently used as ultrafast electron diffraction sources. Even with the limited repetition rate, normal conducting photocathode RF guns generate very low emittance and short pulse electron beams thanks to their high accelerating field and the efficient positioning of focusing solenoids. We report our activity of the design and production of an S-band normal conducting photocathode gun. The RF characteristics, thermal heating and vacuum analyses are discussed.

 
THP118 Status of the J-PARC Negative Hydrogen Ion Source ion, ion-source, rfq, plasma 1016
 
  • H. Oguri, Y. Namekawa, K. Ohkoshi, A. Ueno
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • K. Ikegami
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

A cesium-free negative hydrogen ion source driven with a LaB6 filament is being operated for J-PARC. The beam commissioning of J-PARC accelerators started in November 2006. As of April 2010, there have been 32 beam commissioning or supply runs. In these runs, the ion source has been successfully operated in two different modes such as low current mode of 5 mA and high current mode of 30 mA. According to the task of the run, one of the two modes was selected. However, the beam current has been restricted to less than 15 mA for the stable operation of the RFQ linac which has serious discharge problem from September 2008. The beam run is performed during 4-5 weeks cycles, which consisted of a 3-4 weeks beam run and 4 days down-period interval. At the recent beam run, approximately 700 hours continuous operation was achieved, which is satisfied with the requirement of the ion source lifetime for the J-PARC first stage. At every runs, the beam interruption time due to the ion source failure is several hours, which correspond to the ion source availability of 99 %.

 
THP119 Developments for Performance Improvement of SNS H- Ion Source RF Systems ion-source, ion, plasma, impedance 1019
 
  • Y.W. Kang, R.E. Fuja, T.W. Hardek, S.W. Lee, M.P. McCarthy, M.F. Piller, K.R. Shin, M.P. Stockli, A.V. Vassioutchenko, R.F. Welton
    ORNL, Oak Ridge, Tennessee
 
 

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is in the process of ramping up the H- ion beam power to 1.4 MW, its full design power for the neutron production. For robust operation of the neutron facility, work is underway for various improvements on the RF power systems of the ion source. For short and long-term higher beam power operations, an RF-driven H- ion source employing external antenna with a water-cooled, ceramic aluminum nitride (AlN) plasma chamber has been developed*. The new ion source has been tested to deliver up to 42 mA in the SNS Front End (FE) and unanalyzed beam currents up to ~100mA (60Hz, 1ms) in the ion source test stand. In addition to the external antenna design for improved antenna lifetime, other RF developments for improvement of reliability are running 2 MHz power amplifier system is with isolation transformer, employing full solid-state 2 MHz power amplifier, more precise 2 MHz capacitive impedance matching, and upgrading 13 MHz RF plasma gun system. This paper discusses the engineering solutions with analysis and development of the above RF systems for the new ion source system.


R.F. Welton, N.J. Desai, J. Carmichael, B. Han, Y.W. Kang, S.N. Murray, T. Pennisi, M. Santana, and M.P. Stockli, "The Continued Development of the SNS External Antenna H- Ion Source," ICIS2009

 
THP121 Development of an L-band RF Gun for High-duty-cycle Operation cavity, gun, resonance, electron 1025
 
  • G. Isoyama, R. Kato, N. Sugimoto
    ISIR, Osaka
  • H. Hayano, H. Sugiyama, T. Takatomi, J. Urakawa
    KEK, Ibaraki
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
 
 

We are developing an L-band photocathode RF gun in collaboration with KEK and Hiroshima University. The RF gun will be used not only at Osaka University but also at STF of KEK, so that it can be stably operated at the input RF power of 5 MW with 1 ms duration and a 5 Hz repetition rate, resulting in the average input power of 25 kW. The water-cooling system of the 1.5 cell cavity is designed, which can take the heat with the temperature rise of the cavity body by 5°C at the flow rate of cooling water of 358~723 liter/min. The several parts of the RF cavity are assembled with brazing and the most crucial process is brazing of three main components of the RF cavity into one. The brazing has to be tight and perfect not to allow vacuum leak, while the brazing filler metal must not go out on to the inner surface of the cavity to avoid discharge triggered by the scabrous filler metal on the cavity wall. Test experiments are conducted and a guideline is concluded for such brazing.

 
FR104 Progress of X-Band Accelerating Structures collider, damping, linear-collider, linac 1038
 
  • T. Higo
    KEK, Ibaraki
 
 

A CERN-SLAC-KEK collaboration on high gradient X-band accelerator structure development for CLIC has been ongoing for the past three years. A major outcome has been the stable 100 MV/m gradient operation of a number of CLIC prototype structures. The design of the structures, which have very strong higher-order-mode damping, is based on newly developed high-power scaling laws. The structures are being fabricated using the technology which was developed in the GLC/NLC projects which is giving excellent reproducibility. The features of this new generation of high-gradient normal conducting structures and their testing results are reviewed.

 

slides icon

Slides

 
FR105 Study of Basic Breakdown Phenomena in High Gradient Vacuum Structures cavity, accelerating-gradient, collider, electron 1043
 
  • V.A. Dolgashev
    SLAC, Menlo Park, California
 
 

We present the results of R&D aimed at exploring the basic physics of RF breakdown phenomena in high vacuum structures. We performed an extensive experimental survey of materials for RF magnetic field induced metal fatigue. To do this, we designed a cavity operating at a TE01m-like mode which focuses RF magnetic field on the flat sample surface. We tested more than 20 samples of materials including single crystal copper, copper alloys, and refractory metals. With these results in hand, we constructed standing wave cavities of different geometries and materials to conduct RF-breakdown experiments. To study a broad range of materials and surfaces, we explored different structure-joining techniques, including those which allow us to avoid high temperature brazing. Using structures of different geometries, we examined the effect of the mixture of surface electric and magnetic fields on breakdown behavior. To study this effect further we designed a structure in which we can adjust the mixture of fields using two independent RF sources.

 

slides icon

Slides