A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

optics

Paper Title Other Keywords Page
MOP018 Commissioning Status of the Decelerator Test Beam Line in CTF3 quadrupole, alignment, diagnostics, lattice 85
 
  • S. Döbert, E. Adli, R.L. Lillestol, M. Olvegård, I. Syratchev
    CERN, Geneva
  • D. Carrillo, F. Toral
    CIEMAT, Madrid
  • A. Faus-Golfe, J.J. García-Garrigós
    IFIC, Valencia
  • Yu.A. Kubyshin
    UPC, Barcelona
  • G. Montoro
    EPSC, CASTELLDEFELS
 
 

The CLIC Test Facility (CTF3) at CERN was constructed by the CTF3 collaboration to study the feasibility of the concepts for a compact linear collider. The test beam line (TBL) recently added to the CTF3 machine was designed to study the CLIC decelerator beam dynamics and 12 GHz power production. The beam line consists of a F0D0 lattice with high precision BPM's and quadrupoles on movers for precise beam alignment. A total of 16 Power Extraction and Transfer Structures (PETS) will be installed in between the quadrupoles to extract 12 GHz power from the drive beam. The CTF3 drive beam with a bunch-train length of 140 ns, 12 GHz bunch repetition frequency and an average current over the train of up to 28 A will be used. Each PETS structure will produce 135 MW of 12 GHz power at nominal current. The beam will have lost more than 50 % of its initial energy of 150 MeV at the end of the beam line and will contain particles with energies between 67 MeV and 150 MeV. The beam line is completely installed and the PETS structures will be successively added until summer 2011. The paper will describe the first results obtained during commissioning of the beam line and the first PETS prototype.

 
TUP090 Development of a Bunch Length Detector electron, proton, vacuum, resonance 617
 
  • J.Y. Kim, H.-C. Bhang, D.G. Kim
    SNU, Seoul
  • J.-W. Kim
    NCC, Korea, Kyonggi
 
 

A bunch length detector has been designed and constructed, which can measure current distributions inside the beam bunch. The device measures secondary electrons that are emitted when the beam hits a negatively biased thin target wire. Two main components of the device are an rf deflector to deflect secondary electrons vertically in correlation with the rf time of the beam bunch, and microchannel plate to detect the electrons after spatial discrimination. Rf properties of the rf deflector were first numerically analyzed, and a full-scale cold model was built and tested using a network analyzer. Microchannel plate detector was tested using a beta-emitting isotope source. The electron optics were calculated to design the structure of the detector, and the actual detector will soon be constructed and tested using a cw proton beam from a cyclotron.

 
THP075 Laser-Beam Propagation Characteristics in New Laser-Based Alignment System at the KEKB Injector Linac laser, vacuum, alignment, linac 917
 
  • T. Suwada, M. Satoh
    KEK, Ibaraki
 
 

A new laser-based alignment system is under development in order to precisely align accelerator components along an ideal straight line at the KEKB injector linac towards the next generation of B-factories. A new laser optics generating so-called Airy beam has been developed for the laser-based alignment system. The laser-beam propagation characteristics both in vacuum and at atmospheric pressure have been systematically investigated at a 82-m-long straight section of the injector linac. The results in the measured propagation characteristics are in good agreement with those analyzed on the basis of theoretical analysis in Gaussian laser propagation. In this report the experimental study is described in detail along with the basic design and recent development of the new laser-based alignment system.