A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

alignment

Paper Title Other Keywords Page
MOP018 Commissioning Status of the Decelerator Test Beam Line in CTF3 quadrupole, optics, diagnostics, lattice 85
 
  • S. Döbert, E. Adli, R.L. Lillestol, M. Olvegård, I. Syratchev
    CERN, Geneva
  • D. Carrillo, F. Toral
    CIEMAT, Madrid
  • A. Faus-Golfe, J.J. García-Garrigós
    IFIC, Valencia
  • Yu.A. Kubyshin
    UPC, Barcelona
  • G. Montoro
    EPSC, CASTELLDEFELS
 
 

The CLIC Test Facility (CTF3) at CERN was constructed by the CTF3 collaboration to study the feasibility of the concepts for a compact linear collider. The test beam line (TBL) recently added to the CTF3 machine was designed to study the CLIC decelerator beam dynamics and 12 GHz power production. The beam line consists of a F0D0 lattice with high precision BPM's and quadrupoles on movers for precise beam alignment. A total of 16 Power Extraction and Transfer Structures (PETS) will be installed in between the quadrupoles to extract 12 GHz power from the drive beam. The CTF3 drive beam with a bunch-train length of 140 ns, 12 GHz bunch repetition frequency and an average current over the train of up to 28 A will be used. Each PETS structure will produce 135 MW of 12 GHz power at nominal current. The beam will have lost more than 50 % of its initial energy of 150 MeV at the end of the beam line and will contain particles with energies between 67 MeV and 150 MeV. The beam line is completely installed and the PETS structures will be successively added until summer 2011. The paper will describe the first results obtained during commissioning of the beam line and the first PETS prototype.

 
MOP020 CLIC Two-beam Module Design and Integration vacuum, quadrupole, linac, damping 91
 
  • A. Samoshkin, D. Gudkov, G. Riddone
    CERN, Geneva
 
 

The CLIC (Compact LInear Collider) design is based on two-beam acceleration concept developed at CERN, where the RF power is generated by a high current electron-beam (Drive Beam) running parallel to the Main Beam. The Drive Beam is decelerated in special power extraction structures (PETS) and the generated RF power is transferred via waveguides to the accelerating structures (AS). The accelerating gradient must be very high (100 MV/m) to reach the high energy for the electron-positron collisions. To facilitate the matching of the beams, components are assembled in 2-m long modules, of few different types. In some of them the AS are replaced by quadrupoles used for the beam focusing. Their alignment and positioning is made by using the signals from the beam-position monitors (BPM). Special modules are needed in damping region or to carry out dedicated instrumentation and vacuum equipment. The module design and integration has to cope with challenging requirements from the different technical systems. This paper reports the status of the engineering design and reports on the main technical issues.

 
MOP026 A Novel Alignment Procedure for the Final Focus of Future Linear Colliders coupling, multipole, linear-collider, collider 109
 
  • A. Latina
    Fermilab, Batavia
  • P. Raimondi
    INFN/LNF, Frascati (Roma)
 
 

An algorithm for the simultaneous optimization of orbit, dispersion, coupling and beta-beating in the final focus of future linear colliders is presented. Based on orbit and dispersion measurements the algorithm determines the optimal corrector settings in order to simultaneously minimize the r.m.s orbit, the r.m.s dispersion, the r.m.s coupling, the r.m.s. beta-beating and the r.m.s strength of the dipoles correctors. A number of different options for error handling of beam position monitors, weighting, and correction have been introduced to ensure the stability of the algorithm. A sextupole tuning procedure is also applied to further optimize the beam parameters at the interaction point. Preliminary results for the beam delivery systems of CLIC are presented.

 
MOP103 Studies on High-precision Machining and Assembly of CLIC RF Structures simulation, damping, cavity, collider 301
 
  • J. Huopana
    HIP, University of Helsinki
  • S. Atieh, G. Riddone
    CERN, Geneva
  • K. Österberg
    Helsinki University, Department of Physics, University of Helsinki
 
 

The Compact Linear Collider (CLIC) is currently under development at CERN as a potential multi-TeV e+e' collider. The manufacturing and assembly tolerances for the required RF components are essential for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is sensitive to mechanical errors in the shape and the alignment of the accelerating cavity. The current tolerances are in the micron range. This raises challenges in the field of mechanical design and demands special manufacturing technologies and processes. Currently the mechanical design of the accelerating structures is based on a disk design. Alternatively, it is possible to create the accelerating assembly from quadrants, which has the potential to be favoured for the mass production due to simplicity and cost. In this case, the functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. This paper focuses on the development work done in design and simulation for prototype accelerating structures and describes its application to series production.

 
MOP104 Studies on the Thermo-mechanical Behavior of the CLIC Two-beam Module vacuum, RF-structure, linac, quadrupole 304
 
  • R.J. Nousiainen, K. Osterberg
    HIP, University of Helsinki
  • G. Riddone
    CERN, Geneva
 
 

To fulfill the mechanical requirements set by the luminosity goals of the CLIC collider, currently under study, the 2-m two-beam modules, the shortest repetitive elements in the main linac, have to be controlled at micrometer level. At the same time these modules are exposed to variable high power dissipation while the accelerator is ramped up to nominal power as well as when the mode of CLIC operation is varied. This will result into inevitable temperature excursions driving mechanical distortions in and between different module components. A FEM model is essential to estimate and simulate the fundamental thermo-mechanical behavior of the CLIC two-beam module to facilitate its design and development. Firstly, the fundamental thermal environment is created for different RF components of the module. Secondly, the first thermal and structural contacts for adjacent components as well as idealized kinematic coupling for the main module components are introduced. Finally, the thermal and structural results for the studied module configuration are presented showing the fundamental thermo-mechanical effects of primary CLIC collider operation modes.

 
TU303 Status of the Cornell ERL Injector Cryomodule cavity, HOM, cryomodule, SRF 382
 
  • M. Liepe
    CLASSE, Ithaca, New York
 
 

The Cornell Energy Recovery Linac (ERL) Injector cryomodule is part of a prototype electron beam source to demonstrate production of CW 1.3 GHz, 100 mA average current, 2 ps, 77 pC bunches with emittance of 1 mm-mrad. After a successful initial run of the cryomodule with beam, an improvement program was initiated in the Fall 2009. The goals of the reconfiguration were to replace the RF absorbers in the beamline HOM loads that were subject to static charging, re-process the SRF cavities that exhibited a low Q that further decreased by 50% during the run, and improve diagnostic sensor accuracy within the cryomodule. The upgraded cryomodule was re-commissioned in early 2010 with excellent performance. Details of the investigation and remedies for HOM load charging, cavity Q recovery, and module assembly logistics will be presented along with the ERL Injector beam performance.

 

slides icon

Slides

 
TUP041 The New GSI HLI-RFQ for CW-Operation rfq, ion, emittance, ECR 494
 
  • M. Vossberg, A. Schempp, C. Zhang
    IAP, Frankfurt am Main
  • W.A. Barth, L.A. Dahl
    GSI, Darmstadt
 
 

A new CW-RFQ has been built for the upgrade of the HLI (High Charge State Injector) of GSI for operating with a 28GHz-ECR-Ion source and simultaneous increase of the beam duty cycle from 25 % now to 100 %. The new HLI 4-rod RFQ will accelerate charged ions from 4 keV/u to 300 keV/u for the injection into the IH-structure. High beam transmission, a small energy spread and small transverse emittance growth and good input matching are design goals. Properties of this CW-RFQ, status of project and first measurements will be presented.

 
TUP098 Wakefield Monitor Development for CLIC Accelerating Structure wakefield, linac, cavity, damping 641
 
  • F. Peauger, W. Farabolini, P. Girardot
    CEA, Gif-sur-Yvette
  • A. Andersson, G. Riddone, A. Samoshkin, A. Solodko
    CERN, Geneva
  • R.J.M.Y. Ruber
    Uppsala University, Uppsala
  • R. Zennaro
    PSI, Villigen
 
 

To achieve high luminosity in CLIC, the accelerating structures must be aligned to an RMS accuracy of 5 μm with respect to the beam trajectory. Position detectors called Wakefield Monitors (WFM) are integrated to the structure for a beam based alignment. This paper describes the requirements of such monitors. The development plan and basic feature of the WFM as well as the accelerating structure working at 12 GHz and 100 MV/m are shortly described. Then we focus on detailed electromagnetic simulations and design of the WFM itself. In particular, time domain computations are performed and an evaluation of the intrinsic resolution is done for two higher order modes at 17 and 24 GHz. The mechanical design of the accelerating structure with WFM is also presented. Precise machining with a tolerance of 2.5 μm and a surface roughness of 0.025 μm is demonstrated. The fabrication status of three complete accelerating structures with WFM is finally presented for a feasibility demonstration with beam in CTF3 at CERN.

 
THP075 Laser-Beam Propagation Characteristics in New Laser-Based Alignment System at the KEKB Injector Linac laser, vacuum, linac, optics 917
 
  • T. Suwada, M. Satoh
    KEK, Ibaraki
 
 

A new laser-based alignment system is under development in order to precisely align accelerator components along an ideal straight line at the KEKB injector linac towards the next generation of B-factories. A new laser optics generating so-called Airy beam has been developed for the laser-based alignment system. The laser-beam propagation characteristics both in vacuum and at atmospheric pressure have been systematically investigated at a 82-m-long straight section of the injector linac. The results in the measured propagation characteristics are in good agreement with those analyzed on the basis of theoretical analysis in Gaussian laser propagation. In this report the experimental study is described in detail along with the basic design and recent development of the new laser-based alignment system.

 
THP076 Design of Collimated Laser Beam Optics for the KEKB Injector Linac Alignment System laser, linac, simulation, injection 920
 
  • M. Satoh, T. Suwada
    KEK, Ibaraki
 
 

A new laser-based alignment system is under development in order to precisely align accelerator components along an ideal straight line at the KEKB injector linac. The new alignment system is strongly required in order to stably accelerate high-brightness electron and positron beams with high bunch charges and also to keep the beam stability with higher quality towards the next generation of B-factories. The new laser-based alignment system consists of the LD mounted on auto stage, vacuum duct, photo diode (PD) and PD detector. To eliminate the laser beam size dependent response of PD, the collimated laser beam propagation along the linac (around 500-m-long) is strongly required. In this paper, we will report the design of collimated laser beam optics for the KEKB injector linac alignment system in detail.