A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

ISAC

Paper Title Other Keywords Page
MO202 Operating Experience of the 20 MV Upgrade Linac cavity, cryomodule, linac, TRIUMF 21
 
  • R.E. Laxdal, C.D. Beard, R.J. Dawson, K. Fong, A. Grassellino, M.P. Laverty, D. Longuevergne, M. Marchetto, A.K. Mitra, T.C. Ries, I. Sekachev, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver
 
 

The ISAC-II Phase II expansion includes the addition of 20 new quarter wave resonators in three cryomodules to double the energy gain of the ISAC-II superconducting linac. The rf cavities are produced in Canada. The talk will concentrate on the beam commissioning (scheduled for March 2010) and early operating experience.

 
MOP048 Experimental Study of the Surface Resistance of the 141 Mhz Quarter-Wave Resonator at Triumf cavity, vacuum, TRIUMF, monitoring 166
 
  • D. Longuevergne
    UBC & TRIUMF, Vancouver, British Columbia
  • C.D. Beard, A. Grassellino, P. Kolb, R.E. Laxdal, V. Zvyagintsev
    TRIUMF, Vancouver
 
 

The upgrade (Phase II) of the ISAC-II superconducting linac has been completed this spring and has been commissioned. Two spare 141 MHz Quarter-Wave Resonators made of bulk Niobium are available at TRIUMF to lead more specific studies on surface resistance. This opportunity has also been taken to optimize the surface treatment to improve the accelerating field gradient at the operating power level. The aim of the study presented here is to link together several surface treatments (etching depth, 120C baking) and test conditions (Q-disease, 4.2 K and 2K tests) and sequence them in an appropriate order to understand more deeply their dependencies.

 
TUP092 The ISAC II Current Monitor System pick-up, controls, rfq, linac 623
 
  • M. Marchetto, J. Aoki, K. Langton, R.E. Laxdal, W.R. Rawnsley, J.E. Richards
    TRIUMF, Vancouver
 
 

The post acceleration section of the ISAC radioactive ion beam (RIB) facility is composed of a radio frequency quadrupole (RFQ) followed by a drift tube linac (DTL), both room temperature machines, that serve a medium energy experimental area up to 1.8 MeV/u, and a superconducting linac (SCLINAC) that serves a high energy experimental area. This SCLINAC, composed of forty quarter wave resonators housed in eight cryomodules, is capable of a total accelerating voltage of circa 40 MV. Since each cavity is phased independently at the maximum operational voltage, the final energy depends on the mass to charge ratio of the accelerated species. In order to deliver energies higher than 5 MeV/u we need to monitor the beam current as mandated by our operating license. The current monitor system (CMS) is composed of two non intercepting and one partially intercepting monitor. The signals from these three monitors are processed in a single control system that provides a go signal to the Safety system enabling beam delivery. The CMS system allows to exploit the SCLINAC to its full potential. In this paper we will present both hardware configuration and software control of the CMS.

 
THP043 1.3GHz Cavity Development at TRIUMF cavity, linac, TRIUMF, cryomodule 857
 
  • R.E. Laxdal, C.D. Beard, A. Grassellino, P. Kolb, S.R. Koscielniak, V. Zvyagintsev
    TRIUMF, Vancouver
  • D. Longuevergne
    UBC & TRIUMF, Vancouver, British Columbia
  • R.S. Orr, W. Trischuk
    University of Toronto, Toronto, Ontario
 
 

TRIUMF has embarked on a 1.3GHz development program to support the construction of a 50MeV 10mA e-Linac for the production of radioactive ion beams through photo-fission. Two single cell bulk niobium cavities have been produced in Canadian Industry. A seven-cell cavity in copper is being fabricated both as a manufacturing model and to test higher order mode calculations. Electro-magnetic and mechanical models of a multi-cell cavity are being done to optimize the final design for high intensity acceleration. The 1.3GHz cavity development program will be presented.

 
THP044 RF Cavity Performance in the ISAC-II Superconducting Heavy Ion Linac cavity, linac, cryomodule, acceleration 860
 
  • D. Longuevergne
    UBC & TRIUMF, Vancouver, British Columbia
  • C.D. Beard, A. Grassellino, P. Kolb, R.E. Laxdal, V. Zvyagintsev
    TRIUMF, Vancouver
 
 

The ISAC-II superconducting linac consists of forty quarter wave bulk niobium cavities. There are eight and twelve 106MHz cavities at beta=5.7% and 7.1% respectively and twenty cavities at 141MHz at beta=11%. The first twenty have been operating since 2006 (Phase I) and the remainder have been installed for first commissioning in April 2010 (Phase II). Cavity performance statistics of the 2006 cavities have been accumulated to look for signs of systematic degradation in performance. These will be presented. In addition single cavity test results and in situ characterization tests of the first operation of the Phase II cavities will be presented.