A   B   C   D   E   F   G   H   I   L   M   N   O   P   Q   R   S   T   V  

cyclotron

Paper Title Other Keywords Page
MO-07 The SPES project: an ISOL facility for exotic beams target, neutron, proton, ion 9
 
  • G. Prete, A. Andrighetto, L. Biasetto, F. Gramegna, A. Lombardi, M. Manzolaro
    INFN/LNL, Legnaro
  • L. Calabretta
    INFN/LNS, Catania
 
 

SPES (Selective Production of Exotic Species) is an INFN project to develop a Radioactive Ion Beam (RIB) facility as an intermediate step toward EURISOL. The SPES project is part of the INFN Road Map for the Nuclear Physics development in Italy and is supported by LNL and LNS the INFN National Laboratories of Nuclear Physics in Legnaro and Catania. The Laboratori Nazionali di Legnaro (LNL) was chosen as the facility site due to the presence of the PIAVE-ALPI accelerator complex, which will be used as re-accelerator for the RIBs. The SPES project is based on the ISOL method with an UCx Direct Target and makes use of a proton driver of at least 40 MeV energy and 200 microA current. Neutron-rich radioactive beams will be produced by Uranium fission at an expected fission rate in the target in the order of 1013 fissions per second. The key feature of SPES is to provide high intensity and highquality beams of neutron rich nuclei to perform forefront research in nuclear structure, reaction dynamics and interdisciplinary fields like medical, biological and material sciences. The exotic isotopes will be re-accelerated by the ALPI superconducting linac at energies up to 10AMeV for masses in the region of A=130 amu with an expected rate on target of 109 pps.

 

slides icon

Slides

 
MO-10 Progress on the Commissioning of Radioactive Isotope Beam Factory at RIKEN Nishina Center acceleration, ion, extraction, electron 16
 
  • K. Yamada, T. Dantsuka, M. Fujimaki, T. Fujinawa, N. Fukunishi, A. Goto, H. Hasebe, Y. Higurashi, E. Ikezawa, O. Kamigaito, M. Kase, M. Kobayashi Komiyama, H. Kuboki, K. Kumagai, T. Maie, M. Nagase, T. Nakagawa, J. Ohnishi, H. Okuno, N. Sakamoto, Y. Sato, K. Suda, M. Wakasugi, H. Watanabe, T. Watanabe, Y. Watanabe, Y. Yano, S. Yokouchi
    RIKEN, Wako, Saitama
 
 

The Radioactive Isotope Beam Factory at RIKEN Nishina Center is a next generation facility which is capable of providing the world’s most intense RI beams over the whole range of atomic masses. Three new ring cyclotrons have been constructed as post-accelerators for the existing facility in order to provide the intense heavy ion beam for the RI beam production by using a in-flight separation method. The beam commissioning of RIBF was started at July 2006 and we succeeded in the first beam extraction from the final booster cyclotron, SRC, by using 345 MeV/nucleon aluminum beam on December 28th 2006. The first uranium beam with energy of 345 MeV/nucleon was extracted from the SRC on March 23rd 2007. Various modifications for equipments and many beam studies were performed in order to improve the transmission efficiency and to gain up the beam intensity. Consequently, the world’s most intense 0.4 pnA 238U beam with energy of 345 MeV/nucleon and 170 pnA 48Ca beam with energy of 345 MeV/nucleon have been provided for experiments.

 

slides icon

Slides

 
TU-07 Operation Status of High Intensity Ion Beams at GANIL ion, target, ion-source, ECRIS 54
 
  • F. Chautard, G. Sénécal
    GANIL, Caen
 
 

The Grand Accélérateur National d’Ions Lourds (GANIL) facility (Caen, France) is dedicated to the acceleration of heavy ion beams for nuclear physics, atomic physics, radiobiology and material irradiation. The production of stable and radioactive ion beams for nuclear physics studies represents the main part of the activity. Two complementary methods are used for exotic beam production: the Isotope Separation On-Line (ISOL, the SPIRAL1 facility) and the In-Flight Separation techniques (IFS). SPIRAL1, the ISOL facility, is running since 2001, producing and post-accelerating radioactive ion beams. The running modes of the accelerators are recalled as well as a review of the operation from 2001 to 2008. A point is done on the way we managed the high intensity ion beam transport issues and constraints which allows the exotic beam production improvement.

 

slides icon

Slides

 
TU-08 Status Report and Future Development FLNR JINR Heavy Ions Accelerator Complex ion, ECR, extraction, injection 59
 
  • G. Gulbekyan, B. Gikal, I. Kalagin, N. Kazarinov
    JINR/FLNR, Dubna
 
 

Four heavy ions cyclotrons are in operation at FLNR now. Heavy ion beams used for super heavy elements synthesis, RIB production and application. Plan for seven years accelerator development and operation are presented.

 

slides icon

Slides

 
TU-09 RCNP Cyclotron Facility ion, acceleration, pick-up, ion-source 64
 
  • K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, K. Nagayama, T. Saito, H. Tamura, T. Yorita
    Osaka University/RCNP, Osaka
 
 

The Research Center for Nuclear Physics (RCNP) cyclotron cascade system has been operated to provide high quality beams for various experiments. In order to increase the physics opportunities, the Azimuthally Varying Field (AVF) cyclotron facility was upgraded recently. A flat-topping system and an 18-GHz superconducting Electron Cyclotron Resonance (ECR) ion source were introduced to improve the beam’s quality and intensity. A new beam line was installed to diagnose the characteristics of the beam to be injected into the ring cyclotron and to bypass the ring cyclotron and directly transport low energy beams from the AVF cyclotron to experimental halls. A separator is equipped to provide RI beams produced by fusion reactions at low energy and by projectile fragmentations at high energy. Development has continued to realize the designed performance of these systems.

 

slides icon

Slides

 
TU-10 RF Sytem for Heavy Ion Cyclotrons at RIKEN RIBF cavity, acceleration, ion, pick-up 69
 
  • N. Sakamoto, M. Fujimaki, A. Goto, O. Kamigaito, M. Kase, R. Koyama, K. Suda, K. Yamada, S. Yokouchi
    RIKEN, Wako
 
 

At RIKEN RIB-factory (RIBF) an accelerator complex as an energy booster which consists of superconducting ring cyclotron (SRC), intermediate-stage ring cyclotron (IRC) and fixed-frequency ring cyclotron (FRC) provides very heavy ion beams like uranium with an energy of 345 MeV/u. The total beam power obtained up to now at the SRC is as high as 3 kW in the case of 48Ca with an intensity of 170 pnA. Recently we have succeeded in achieving stable and reliable operation of rf system for new cyclotrons. In this paper the present performance of the rf system and a recent development is reported.

 

slides icon

Slides

 
TU-11 A Novel Design of a Cyclotron Based Accelerator System for Multi-Ion Therapy ion, extraction, cavity, injection 74
 
  • J.M. Schippers, A. Adelmann, W. Joho, M. Negrazus, M. Seidel, M.K. Stam
    PSI, Villigen
  • H. Homeyer
    HMI, Berlin
 
 

A cyclotron based system for hadron therapy is developed, which allows a phased installation: start with protons and Helium ions and add Carbon ions later. The concept is based on an accelerator system of two coupled cyclotrons. The first cyclotron provides protons or He ions that can be used for the full spectrum of treatments and “low energy” C-ions, with a range of 12.7 cm in water for a subset of tumours and radiobiological experiments. For treatments at all tumor sites with C-ions, the C-ions can be boosted subsequently up to 450 MeV/nucl in a separate sector cyclotron, consisting of six sector magnets with superconducting coils and three RF cavities. First studies of the separate sector cyclotron indicate a relatively robust design with straight forward beam dynamics. This system is smaller than corresponding synchrotrons and possesses the typical advantages for therapy applications of a cyclotron. Present efforts to optimize the design of the superconducting sector magnets indicate that the introduction of a radial gradient in the sector would have many advantages.

 

slides icon

Slides

 
TU-12 Design Study of Medical Cyclotron SCENT300 cavity, ion, proton, extraction 79
 
  • M. Maggiore, L. Calabretta, M. Camarda, G. Gallo, S. Passarello, L.A.C. Piazza
    INFN/LNS, Catania
  • D. Campo, D. Garufi, R. La Rosa
    Catania University/Dept. Phys. and Eng., Catania
 
 

The study of the Superconducting Cyclotron named SCENT300 was carried out by the accelerator R&D team of Laboratori Nazionali del Sud (LNS-INFN) of Catania in collaboration with the University of Catania and supported by IBA (Belgium). Combining the compactness of a superconducting cyclotron, with the advantage of this kind of machine as its continuous beam and its very good current control, the accelerator R&D group of LNS, by its ten-year of experience with this kind of machine, has developed a concept for a multiparticle therapy cyclotron which is described in the following report.

 

slides icon

Slides

 
WE-05 Development of Beam Current Monitor with HTS SQUID and HTS Current Sensor ion, electron, heavy-ion, radiation 109
 
  • T. Watanabe, N. Fukunishi, M. Kase, Y. Sasaki, Y. Yano
    RIKEN, Wako
 
 

A highly sensitive beam current monitor with an HTS (High-Temperature Superconducting) SQUID (Superconducting QUantum Interference Device) and an HTS current sensor, that is, an HTS SQUID monitor, has been developed for use of the RIBF (RI beam factory) at RIKEN. Unlike other existing facilities, the HTS SQUID monitor allows us to measure the DC of high-energy heavy-ion beams nondestructively in real time, and the beam current extracted from the cyclotron can be recorded without interrupting the beam user's experiments. Both the HTS magnetic shield and the HTS current sensor were dip-coated to form a Bi2 - Sr2 - Ca2 - Cu3 - Ox (Bi-2223) layer on 99.9 % MgO ceramic substrates. In the present work, all the fabricated HTS devices are cooled by a low-vibration pulse-tube refrigerator. These technologies enabled us to downsize the system. Prior to practical use at the RIBF, the HTS-SQUID monitor was installed in the beam transport line of the RIKEN ring cyclotron to demonstrate its performance. As a result, a 20 μA 40Ar15+ beam intensity (63 MeV/u) was successfully measured with a 500 nA resolution. Despite the performance taking place in an environment with strong gamma ray and neutron flux radiations, RF background and large stray magnetic fields, the measurements were successfully carried out in this study. This year, the HTS SQUID monitor was upgraded to have aresolution of 100 nA and was reinstalled inthe beam transport line, enabling us to measure a 4 μA 132Xe20+ (10.8 MeV/u) beam and a 1 μA 132Xe41+ (50.1 MeV/u) beam used for the accelerator operations at RIBF. Hence, we will report the results of the beam measurements an the present status of the HTS SQUID monitor.

 

slides icon

Slides

 
WE-09 Development of Metal Ion Beam and Beam Transmission at JYFL ion, ion-source, ECRIS, plasma 128
 
  • H. Koivisto, O. Tarvainen, T. Ropponen, M. Savonen, O. Steczkiewicz, V. Toivanen
    JYFL, Jyväskylä
 
 

Funding: This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2006-2011 (Nuclear and Accelerator Based Physics Programme at JYFL).


The activities of the JYFL ion source group cover the development of metal ion beams, improvement of beam transmission and studies of Electron Cyclotron Resonance Ion Source (ECRIS) plasma parameters. The development of metal ion beams is one of the most important areas in the accelerator technology. The low energy beam injection for K-130 cyclotron is also studied in order to improve its beam transmission. It has been noticed that the accelerated beam intensity after the cyclotron does not increase with the intensity extracted from the JYFL 14 GHz ECR ion source, which indicates that the beam transmission efficiency decreases remarkably as a function of beam intensity. Three possible explanations have been found: 1) the extraction of the JYFL 14 GHz ECRIS is not optimized for high intensity ion beams, 2) the solenoid focusing in the injection line causes degradation of beam quality and 3) the focusing properties of the dipoles (analysing magnets) are not adequate. In many cases a hollow beam structure is generated while the origin of hollowness remains unknown.

 

slides icon

Slides

 
D-01 Design of the Central Region of the New Multi-Purpose Cyclotron U400R ion, acceleration, emittance, injection 282
 
  • G. Gulbekyan, I. Ivanenko
    JINR/FLNR, Dubna
 
 

At the present time, the activities on creation of the new multi-purpose isochronous cyclotron U400R are carried out at the FLNR, JINR. The isochronous cyclotron U400R is intended for obtaining the beams of the accelerated ions from 4He1+ (A/Z=4, W=27MeV/u) up to 132Xe11+ (A/Z=12, W=3.5MeV/u). The cyclotron magnetic field can be changed from 0.8T to 1.8T and allow the smoothly variation of the ion beam energy at the range ±35% from nominal. The cyclotron RF system keeps up 2 - 6 harmonic modes. The aim of the present work is to investigate the optimal geometry of U400R cyclotron center for the wide range of acceleration regimes. The computation of the beams acceleration is carried out by means of the computer code CENTR.

 
D-02 Extraction by Stripping of Heavy Ion Beams from Cyclotrons ion, extraction, heavy-ion, radiation 286
 
  • G. Gulbekyan, O.N. Borisov, V.I. Kazacha
    JINR, Dubna
 
 

Accelerated heavy ions get a charge spectrum on passing a thing target. The charge dispersion and its maximum depend on the ion type, its energy, material, and the foil thickness. Change of the ion charge leads to change of the ion magnetic rigidity. Heavy ion beam extraction from the AVF cyclotrons by stripping in the thing targets is based on loss of the radial stability of the accelerated beam after its magnetic rigidity change. Property data of carbon foils used for the heavy ion beam extraction by stripping are given. Experience of using heavy ion beam extraction from the AVF cyclotrons of FLNR (Dubna) by stripping is considered.

 
D-09 Simulation and Design of the Compact Superconducting Cyclotron C400 for Hadron Therapy extraction, ion, proton, simulation 311
 
  • Y. Jongen, M. Abs, A. Blondin, W. Kleeven, S. Zaremba, D. Vandeplassche
    IBA, Louvain-la-Neuve
  • V. Alexandrov, S. Gursky, G. Karamysheva, N. Kazarinov, S. Kostromin, N. Morozov, V. Romanov, N. Rybakov, A. Samartsev, E. Samsonov, G. Shirkov, V. Shvetsov, E. Syresin, A. Tuzikov
    JINR, Dubna
 
 

Carbon therapy is most effective method to treat the resistant tumors. A compact superconducting isochronous cyclotron C400 has been designed by IBA-JINR collaboration. This cyclotron will be used for radiotherapy with proton, helium and carbon ions. The 12C6+ and 4He2+ ions will be accelerated to the energy of 400 MeV/amu and will be extracted by electrostatic deflector, H2+ ions will be accelerated to the energy 265 MeV/amu and protons will be extracted by stripping. The magnet yoke has a diameter of 6.6 m, the total weight of the magnet is about 700 t. The designed magnetic field corresponds to 4.5 T in the hills and 2.45 T in the valleys. Superconducting coils will be enclosed in a cryostat; all other parts will be warm. Three external ion sources will be mounted on the switching magnet on the injection line located bellow of the cyclotron. The main parameters of the cyclotron, its design, the current status of development work on the cyclotron systems and simulations of beam dynamic will be presented.

 
F-04 The Light Ion Guide CB-ECRIS Project at the Texas A&M University Cyclotron Institute ion, ECRIS, light-ion, plasma 354
 
  • G. Tabacaru, D.P. May
    Texas A&M University, College Station
  • J.E. Ärje
    JYFL, Jyväskylä
 
 

Texas A&M University is currently configuring a scheme for the production of radioactive-ion beams that incorporates a light-ion guide (LIG) coupled with an ECRIS constructed for charge-boosting (CB-ECRIS). This scheme is part of an upgrade to the Cyclotron Institute and is intended to produce radioactive beams suitable for injection into the K500 superconducting cyclotron. The principle of operation is the following: the primary beam interacts with a production target placed in the gas cell. A continuous flow of helium gas maintains a constant pressure of 500 mbar maximum in the cell. Recoils are thermalized in the helium buffer gas and ejected from the cell within the gas flow through a small exit hole. The positively charged recoil ions (1+ ) are guided into a 2.43 m long rf-only hexapole and will be transported in this manner on-axis into the CB-ECRIS (Charge Breeding - ECRIS). The CB-ECRIS will operate at 14.5 GHz and has been specially constructed by Scientific Solutions of San Diego, California for chargeboosting. An overall image of the entire project will be presented with details on different construction phases. Specific measurements and results will be presented as well as future developments.

 
G-01 A New Unit Access Control for GANIL and SPIRAL 2 status, radiation, controls, neutron 357
 
  • J. L. Baelde, C. Berthe, F. Chautard, F. Lemaire, S. Perret-Gatel, E. Petit, E. Pichot, B. Rannou, J. F. Rozé, G. Sénécal
    GANIL, Caen
 
 

For the GANIL safety revaluation and the new project of accelerator SPIRAL 2, it was decided to replace the existing access control system for radiological controlled areas. These areas are all cyclotron rooms and experimental areas. The existing system is centralized around VME cards. Updating is becoming very problematic. The new UGA (access control unit) will be composed of a pair of PLC to ensure the safety of each room. It will be supplemented by a system UGB (radiological control unit) that will assure the radiological monitoring of the area concerned. This package will forbid access to a room where the radiological conditions are not sure and, conversely, will forbid the beam if there is a possibility of presence of a person. The study of the system is finished and the record of safety in preparation. At GANIL, the ions are accelerated by cyclotrons (C01 or C02, CSS1, CSS2, CIME) and are transported through beamlines towards the rooms of experiments (D1-D6, G1-G4). A first named extension SPIRAL was brought into service in 2000. It makes it possible to produce and post-accelerate, via the cyclotron CIME, the radioactive ion beams obtained by fragmentation of stable ions resulting from CSS2 in a carbon target. The project SPIRAL2 will arrive soon and has the same need in safety. Each room must thus remain confined (without human presence) when potentially dangerous ionizing radiations are present. This protection was identified as an important function for safety and is provided by EIS (Important Equipment for Safety). The EIS of GANIL are referred and described in the RGE (General Rules of Exploitation). It was decided to replace the current systems of security management by four distinct but interconnected systems.