A   B   C   D   E   F   G   H   I   L   M   N   O   P   Q   R   S   T   V  

controls

Paper Title Other Keywords Page
TU-03 Developmental Activities at BARC-TIFR Pelletron Accelerator Facility ion, rfq, cathode, ion-source 36
 
  • A.K. Gupta, P.V. Bhagwat, R.K. Choudhury
    BARC, Mumbai
 
 

The 14 UD Pelletron Accelerator Facility at Mumbai has recently completed two decades of successful operation. The accelerator is mainly used for basic research in the fields of nuclear, atomic and condensed matter physics as well as material science. The application areas include accelerator mass spectrometry, production of track-etch membranes, radioisotopes production, radiation damage studies and secondary neutron production for cross section measurement etc. Over the years, a number of developmental activities have been carried out in-house that have helped in improving the overall performance and uptime of the accelerator and also made possible to initiate variety of application oriented programmes. Recently, a superconducting LINAC booster has been fully commissioned to provide beams up to A~60 region with E~5 MeV/A. As part of Facility augmentation program, it is planned to have an alternate injector system to the LINAC booster, consisting of 18 GHz superconducting ECR ion source, 75 MHz room temperature RFQ linac and superconducting low-beta resonator cavities. The development of an alternate injector will further enhance the utilization capability of LINAC by covering heavier mass range up to Uranium. The ECR source is being configured jointly with M/s Pantechnik, France, which will deliver a variety of ion beams with high charge states up to 238U34+. This paper will provide detailed presentation of developments being carried out at this facility.

 

slides icon

Slides

 
TU-06 Progress of an Accelerator Mass Spectometry System on the TSUKUBA 12UD Pelletron Tandem Accelerator ion, tandem-accelerator, ion-source, background 49
 
  • K. Sasa, T. Amano, N. Kinoshita, Y. Nagashima, K. Sueki, T. Takahashi, Y. Tosaki, Y. Yamato
    UTTAC University of Tsukuba, Tsukuba
  • H. Matsumura, B. Bessho
    KEK/RSC, Tsukuba
  • Y. Matsushi
    Tokyo University/MALT, Tokyo
 
 

Funding: Work supported by Grants-in-Aid for Scientific Research Programs of the Ministry of Education, Culture, Sports, Science and Technology, Japan.


The 12UD Pelletron tandem accelerator was installed at the University of Tsukuba in 1975. In recent years, the main research field of the 12UD Pelletron tandem accelerator has shifted to accelerator mass spectrometry (AMS) research from nuclear physics. AMS is an ultrasensitive technique for the study of long-lived radioisotopes, and stable isotopes at very low abundances. The high terminal voltage is an advantage in the detection of heavy radioisotopes. It is important for sensitive measurements of heavy radioisotopes that background interference of their stable isobars are suppressed by AMS measurements. With the multi-nuclide AMS system at the University of Tsukuba (Tsukuba AMS system), we are able to measure long-lived radioisotopes of 14C, 26Al, 36Cl and 129I by employing a molecular pilot beam method that stabilize the terminal voltage with 0.1% accuracy. Much progress has been made in the development of new AMS techniques for the Tsukuba AMS system. As for 36Cl AMS, 36Cl9+ at 100 MeV is used for AMS measurements. The standard deviation of the fluctuation is typically ± 2%, and the machine background level of 36Cl/Cl is lower than 1 × 10-15. This report presents the overview and progress of the Tsukuba AMS system.

 

slides icon

Slides

 
WE-04 The Radiation Assurance Test Facility at INFN-LNS Catania ion, site, proton, monitoring 104
 
  • A.B. Alpat, M. Menichelli, A. Papi
    INFN/PG, Perugia
  • R. Harboe-Sorensen
    ESA-ESTEC, Noordwijk
  • G.A.P. Cirrone, F. Ferrera, P. Figuera, P. Finocchiaro, M. Lattuada, D. Rifuggiato
    INFN/LNS, Catania
  • F. Bizzarri, D. Caraffini, M. Petasecca, F. Renzi
    MapRad, Perugia
  • H. Denizli
    Abant Izzet Baysal Üniversitesi, Bolu
  • O. Amutkan
    ODTU/Phys. Dept., Ankara
 
 

This paper describes the beam monitoring system that has been developed at the Superconducting Cyclotron at INFN-LNS (Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania, Italy) in order to monitor the beam parameters such as energy, flux, beam profile, for SEE (Single Event Effects) cross-sections determination and DD (Displacement Damage) studies. In order to have an accurate and continuous monitoring of beam parameters we have developed fully automatic dosimetry setup to be used during SEE (with heavy ions) and DD (with protons of 60 MeV/n) tests of electronic devices and systems. The final goal of our activity is to demonstrate how operating in air, which in our experience is easier than in vacuum, is not detrimental to the accuracy on controlling the beam profile, energy and fluence delivered onto the DUT (Device Under Test) surface, even with non relativistic heavy ions. We have exposed during the same session, two beam calibration systems, the "Reference SEU monitor" developed by ESA/ESTEC and the beam monitoring and dosimetry setup developed by our group. The results are compared and discussed here.

 

slides icon

Slides

 
TH-07 Operational Experience of the Superconducting LINAC Booster at Mumbai linac, cavity, cryogenics, acceleration 174
 
  • V. Nanal, R.D. Deshpande, J.N. Karande, S.S. Jangam, P. Dhumal, R.G. Pillay, M.S. Pose, C. Rozario, S.K. Sarkar, S.R. Sinha
    TIFR, Mumbai
  • S.K. Singh, B. Srinivasan
    BARC, Mumbai
 
 

The superconducting LINAC booster, indigenously developed to boost the energy of the heavy ion beams from the 14 MV Pelletron accelerator at TIFR, Mumbai, has been fully operational since July 2007. The LINAC consists of seven modular cryostats, each housing four lead plated quarter wave resonators, designed for an optimum velocity β0=0.1 at an operating frequency of 150 MHz. In order to maintain a stable phase and amplitude of the electric field in the cavity, the RF controller cards based on a self-excited loop (SEL) with phase and amplitude feedback have been developed indigenously. The cryogenic system for the LINAC has been designed for a typical power dissipation of 6 W in each resonator. Initial beam trials have yielded average energy gain of 0.4 MV/q per cavity corresponding to 80% of the design value. Operational experience of the LINAC, namely, empirically devised procedures for the acceleration of different beams and RF settings, and associated developments are presented.

 

slides icon

Slides

 
C-07 Upgrade of the Control System for the ALPI Cryogenic Distribution Plant cryogenics, linac, vacuum, interlocks 271
 
  • S. Canella, A. Beltramin, A. Calore, T. Contran, P. Modanese, F. Poletto
    INFN/LNL, Legnaro
 
 

In the LNL Heavy Ion Accelerator Complex, ALPI is a superconducting linear accelerator (Linac) whose first runs date back to 1993. In more than 15 years the LNL ALPI Linac evolved from an initial small configuration of 5 cryostats and 16 resonators to the actual size of 20 cryostats and 74 resonators. The superconducting character of ALPI implies the availability of a large cryogenic plant and distribution system to supply the liquid helium necessary to keep the resonators at 4.2 K. While the Linac structure has grown in the years and, in the mean time, the related cryogenic plant and distribution systems were enlarged and upgraded twice, the related control system remained largely unchanged in its main parts and it is now the first sub-system that urgently needs a deep renewing. The challenge to renovate a working control system with limited shut-downs is the subject of this presentation.

 
C-08 Wide Bandwidth, Low Cost System for Cavity Measurements cavity, pick-up, superconducting-cavity, superconductivity 274
 
  • S. Stark, A.M. Porcellato
    INFN/LNL, Legnaro
 
 

Recently we developed a novel measurement apparatus that simplify the tests of superconducting cavities. A few commercial electronic boards, mounted in a devoted chassis and controlled by a PC, operate most of the functions usually carried out by standard RF instrumentation. The set up allows the measurements of resonators in the 80-700 MHz frequency range and we used it to characterize resonators both in the ALPI vault and in off-line tests. Upgraded control program carries out all the typical procedures, related to the cavity measurements in classical VCO-PLL system. It allows to adjust and to measure the RF forward power, to find and update the cavity resonant frequency, to calibrate the pick-up signal, to monitor the transmitted power, to adjust the coupler position. The implemented automatic procedures permit to measure the cavity decay time, to trace the Q-curve, to perform CW and pulse RF conditioning, to calibrate cables and measurement instruments. The same software applies to the other two measurement systems routinely used at Legnaro to test resonators up to 6 GHz frequency.

 
C-09 Design of the MEBT Rebunchers for the SPIRAL 2 Driver cavity, simulation, radio-frequency, resonance 278
 
  • M. Lechartier, D. Besnier, J.F. Leyge, M. Michel
    GANIL, Caen
 
 

The Spiral 2 project uses normal conducting rebunchers to accelerate high intensity beams of protons, deuterons and heavier ions. All cavities work at 88 MHz, the beta is 0.04 and 3 rebunchers are located in the MEBT line, which accepts ions with A/q up to 6. The paper describes the RF design and the technological solutions proposed for an original 3-gap cavity, characterised by very large beam aperture (60 mm) and providing up to 120 kV of effective voltage.

 
D-05 Electron Cooling of Pb54+ Ions in LEIR electron, ion, injection, gun 294
 
  • G. Tranquille
    CERN, Geneva
 
 

Electron cooling is central in the preparation of dense bunches of lead beams for the LHC. Ion beam pulses from the Linac3 are transformed into short high-brightness bunches using multi-turn injection, cooling and accumulation in the Low Energy Ion Ring, LEIR. The LEIR cooler was the first of a new generation of coolers utilising high-perveance variable-density electron beams for the cooling and accumulation of heavy ion beams. It was commissioned in 2006 at the same time as the LEIR ring and has since been used to provide lead ions for the commissioning of the LHC injector chain. We report briefly on the status of the LHC ion injector chain and present results of measurements made to check and to better understand the influence of the electron beam size, intensity and density profile on the cooling performance. Future plans to improve the performance of the device will also be presented.

 
G-01 A New Unit Access Control for GANIL and SPIRAL 2 status, radiation, neutron, cyclotron 357
 
  • J. L. Baelde, C. Berthe, F. Chautard, F. Lemaire, S. Perret-Gatel, E. Petit, E. Pichot, B. Rannou, J. F. Rozé, G. Sénécal
    GANIL, Caen
 
 

For the GANIL safety revaluation and the new project of accelerator SPIRAL 2, it was decided to replace the existing access control system for radiological controlled areas. These areas are all cyclotron rooms and experimental areas. The existing system is centralized around VME cards. Updating is becoming very problematic. The new UGA (access control unit) will be composed of a pair of PLC to ensure the safety of each room. It will be supplemented by a system UGB (radiological control unit) that will assure the radiological monitoring of the area concerned. This package will forbid access to a room where the radiological conditions are not sure and, conversely, will forbid the beam if there is a possibility of presence of a person. The study of the system is finished and the record of safety in preparation. At GANIL, the ions are accelerated by cyclotrons (C01 or C02, CSS1, CSS2, CIME) and are transported through beamlines towards the rooms of experiments (D1-D6, G1-G4). A first named extension SPIRAL was brought into service in 2000. It makes it possible to produce and post-accelerate, via the cyclotron CIME, the radioactive ion beams obtained by fragmentation of stable ions resulting from CSS2 in a carbon target. The project SPIRAL2 will arrive soon and has the same need in safety. Each room must thus remain confined (without human presence) when potentially dangerous ionizing radiations are present. This protection was identified as an important function for safety and is provided by EIS (Important Equipment for Safety). The EIS of GANIL are referred and described in the RGE (General Rules of Exploitation). It was decided to replace the current systems of security management by four distinct but interconnected systems.

 
G-04 Development of Raster Scanning at NIRS-HIMAC target, power-supply, ion, monitoring 370
 
  • T. Furukawa, T. Inaniwa, S. Sato, N. Saotome, S. Fukuda, T. Shirai, Y. Takei, Y. Iwata, A. Nagano, S. Mori, S. Minohara, T. Murakami, E. Takada, K. Noda
    NIRS, Chiba
  • Y. Iseki, K. Hanawa, N. Kakutani, C. Yamazaki, Y. Kanai
    Toshiba, Tokyo
  • H. Izumiya, Y. Sano
    Accelerator Engineering Corp., Chiba
 
 

A new treatment facility project, as an extension of the existing HIMAC facility, has been initiated for the further development of carbon-ion therapy in NIRS. This new treatment facility will be equipped with a 3D irradiation system with pencil beam scanning. The challenge of this project is to realize treatment of a moving target by scanning irradiation. To accomplish practical moving target irradiation and to fix the final design, a prototype of the scanning irradiation system was constructed and installed into existing HIMAC experiment course. The system and the status of the beam test are described.