Keyword: rfq
Paper Title Other Keywords Page
MOPOST014 The 325 MHz FAIR pLinac Ladder RFQ - Final Assembly for Commissioning linac, proton, coupling, vacuum 82
 
  • M. Schuett, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • C.M. Kleffner, K. Knie
    GSI, Darmstadt, Germany
 
  Based on the pos­i­tive re­sults of the un­mod­u­lated 325 MHz Lad­der-RFQ pro­to­type from 2013 to 2016, we de­vel­oped and de­signed a mod­u­lated 3.4 m Lad­der-RFQ*. The Lad­der-RFQ fea­tures a very con­stant volt­age along the axis as well as low di­pole modes. The un­mod­u­lated pro­to­type ac­cepted 3 times the op­er­at­ing power of which is needed in op­er­a­tion** cor­re­spond­ing to a Kil­patrick fac­tor of 3.1 with a pulse length of 200 µs. The 325 MHz RFQ is de­signed to ac­cel­er­ate pro­tons from 95 keV to 3.0 MeV ac­cord­ing to the de­sign pa­ra­me­ters of the pro­ton linac within the FAIR pro­ject***. This par­tic­u­lar high fre­quency for a 4-ROD-RFQ cre­ates dif­fi­cul­ties, which trig­gered the de­vel­op­ment of a Lad­der-RFQ with its high sym­me­try. The re­sults of the un­mod­u­lated pro­to­type have shown, that the Lad­der-RFQ is very well suited for that fre­quency. For the ap­plied cool­ing con­cept, the Lad­der-RFQ can be dri­ven up to a duty fac­tor of 10%. Man­u­fac­tur­ing has been com­pleted in Sep­tem­ber 2018. The final flat­ness & fre­quency tun­ing as well as the final as­sem­bly have been com­pleted. We pre­sent the final RF mea­sure­ments and as­sem­bly steps get­ting the Lad­der-RFQ ready for ship­ment and high power RF test prior to as­sem­bly.
*Journal of Physics: Conf. Series 874 (2017) 012048
**Proceedings of LINAC2016, East Lansing, TUPLR053
***Proceedings of LINAC20118, pp.787-789
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST014  
About • Received ※ 12 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST016 Proton Linac Design for the High Brilliance Neutron Source HBS cavity, linac, neutron, proton 90
 
  • M. Schwarz, M. Droba, K. Kümpel, S. Lamprecht, O. Meusel, N.F. Petry, H. Podlech
    IAP, Frankfurt am Main, Germany
  • J. Baggemann, Th. Brückel, T. Gutberlet, E. Mauerhofer, U. Rücker, A. Schwab, P. Zakalek
    JCNS, Jülich, Germany
  • J. Li
    IEK, Jülich, Germany
  • C. Zhang
    GSI, Darmstadt, Germany
 
  Due to the de­com­mis­sion­ing of sev­eral re­ac­tors, only about half of the neu­trons will be avail­able for re­search in Eu­rope in the next decade de­spite the com­mis­sion­ing of the ESS. High-Cur­rent Ac­cel­er­a­tor-dri­ven Neu­tron Sources (Hi­CANS) could fill this gap. The High Bril­liance Neu­tron Source (HBS) cur­rently under de­vel­op­ment at Forschungszen­trum Jülich is scal­able in terms of beam en­ergy and power due to its mod­u­lar de­sign. The dri­ver linac will ac­cel­er­ate a 100 mA pro­ton beam to 70 MeV. The linac is op­er­ated with a beam duty cycle of up to 13.6 % (15.3 % RF duty cycle) and can si­mul­ta­ne­ously de­liver three pulse lengths (208 µs, 833 µs and 2 ms) for three neu­tron tar­get sta­tions. In order to min­i­mize the de­vel­op­ment ef­fort and the tech­no­log­i­cal risk, state-of-the-art tech­nol­ogy of the MYRRHA in­jec­tor is used. The HBS linac con­sists of a front end (ECR source, LEBT, 2.5 MeV dou­ble RFQ) and a CH-DTL sec­tion with 44 room tem­per­a­ture CH-cav­i­ties. All RF struc­tures are op­er­ated at 176.1 MHz and are de­signed for high duty cycle. Solid-state am­pli­fiers up to 500 kW are used as RF dri­vers. Due to the beam cur­rent and the high av­er­age beam power of up to 952 kW, par­tic­u­lar at­ten­tion is paid to beam dy­nam­ics. In order to min­i­mize beam losses, a quasi-pe­ri­odic lat­tice with con­stant neg­a­tive phase is used. This paper de­scribes the con­cep­tual de­sign and the chal­lenges of a mod­ern high-power and high-cur­rent pro­ton ac­cel­er­a­tor with high re­li­a­bil­ity and avail­abil­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST016  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 11 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST022 Upgrade of the Radio Frequency Quadrupole of the ReAccelerator at NSCL/FRIB operation, vacuum, MMI, RF-structure 104
 
  • A.S. Plastun, J. Brandon, A.I. Henriques, S.H. Kim, D.G. Morris, S. Nash, P.N. Ostroumov, A.C.C. Villari, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • D.B. Crisp, D.P. Sanderson
    NSCL, East Lansing, Michigan, USA
 
  Funding: Work supported by the National Science Foundation under grant PHY15-65546
The ReA-RFQ is a four-rod room-tem­per­a­ture struc­ture aimed to be the first step ac­cel­er­a­tion of rare iso­topes as well as sta­ble beams be­fore in­jec­tion into the ReA SRF linac. The beams of charge to mass ra­tios of 1/5 to 1/2 from the Elec­tron Beam Ion Trap at 12 keV/u should be ac­cel­er­ated to at least 500 keV/u to be ef­fi­ciently ac­cel­er­ated in the main SRF linac. Since the com­mis­sion­ing of the orig­i­nal ReA RFQ in 2010 the de­sign volt­age has never been reached, and CW op­er­a­tion was never achieved due to cool­ing is­sues. In 2016 a new de­sign in­clud­ing trape­zoidal mod­u­la­tion was pro­posed, which per­mit­ted achiev­ing in­creased re­li­a­bil­ity, and would allow reach­ing the orig­i­nal re­quired spec­i­fi­ca­tions. The pro­posed new rods were built and in­stalled in 2019 and com­mis­sioned in the same year. Since then, the RFQ has been work­ing very suc­cess­fully. Re­cently it was opened for in­spec­tion and ver­i­fi­ca­tion of its in­ter­nal sta­tus. No dam­age and dis­col­oration were ob­served. This con­tri­bu­tion will de­scribe the RFQ re­build process, in­volv­ing spe­cific RF pro­tec­tions and other tech­ni­cal as­pects re­lated to the as­sem­bly of the struc­ture. Re­sults of the op­er­a­tion with a va­ri­ety of beams will be pre­sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST022  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 11 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT005 Bunch Measurements with BPM at Low Energy Hadron Accelerators linac, simulation, diagnostics, electron 237
 
  • S.M. Ben Abdillah
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • S. Boussa, A. Gatera, F. Pompon
    SCK•CEN, Mol, Belgium
 
  Beam Po­si­tion Mon­i­tors (BPM) are one of the key di­ag­nos­tics use in LINACs, BPMs should en­sure a con­tin­u­ous mon­i­tor­ing of the beam po­si­tion and en­ergy. BPMs also give an in­di­ca­tion of the beam trans­verse shape. For elec­tron LINACs, beam lon­gi­tu­di­nal length is mea­sured with BPMs. How­ever, in hadron LINACs, it is per­formed with in­tru­sive mod­ules (wire scan­ners, beam shape mon­i­tors) This doc­u­ment re­lates the mea­sure­ment of beam lon­gi­tu­di­nal length with BPMs. It is di­vided in two parts: first, a the­o­ret­i­cal model of the BPM op­er­a­tion and the for­mu­las dri­ving the mea­sure­ment of beam lon­gi­tu­di­nal length from BPM out­put sig­nals. Sec­ond, an ex­per­i­men­tal study run at MYRRHA LINAC fa­cil­ity and show­ing good agree­ment be­tween es­ti­mated val­ues of beam lon­gi­tu­di­nal length from Tracewin sim­u­la­tions and BPM mea­sure­ments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT005  
About • Received ※ 12 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOXSP3 Evaluation of Geometrical Precision and Surface Roughness Quality for the Additively Manufactured Radio Frequency Quadrupole Prototype laser, operation, radio-frequency, radio-frequency-quadrupole 787
 
  • T. Torims, D. Krogere, G. Pikurs, A. Ratkus
    Riga Technical University, Riga, Latvia
  • A. Cherif, M. Vretenar
    CERN, Meyrin, Switzerland
  • N. Delerue
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • M. Foppa Pedretti, M. Pozzi
    Rösler Italiana s.r.l., Concorezzo, Italy
  • S. Gruber, E. Lopez
    Fraunhofer IWS, Dresden, Germany
  • T. Otto
    TalTech, Tallinn, Estonia
  • M. Thielmann, P. Wagenblast
    TRUMPF, Ditzingen, Germany
  • M. Vedani
    POLIMI, Milano, Italy
 
  A mul­ti­dis­ci­pli­nary col­lab­o­ra­tion within the I.​FAST pro­ject teamed-up to de­velop ad­di­tive man­u­fac­tur­ing (AM) tech­nol­ogy so­lu­tions for ac­cel­er­a­tors. The first pro­to­type of an AM pure-cop­per radio fre­quency quadru­pole (RFQ) has been pro­duced, cor­re­spond­ing to 1/4 of a 4-vane RFQ*. It was op­ti­mised for pro­duc­tion with state-of-the-art laser pow­der bed fu­sion tech­nol­ogy. Geo­met­ri­cal pre­ci­sion and rough­ness of the crit­i­cal sur­faces were mea­sured. Alt-hough the ob­tained val­ues were be­yond stan­dard RFQ spec­i­fi­ca­tions, these first re­sults are promis­ing and con-firmed the fea­si­bil­ity of AM man­u­fac­tured com­plex cop-per ac­cel­er­a­tor cav­i­ties. There­fore, fur­ther post-pro­cess­ing tri­als have been con­ducted with the sam­ple RFQ to im-prove sur­face rough­ness. Al­go­rithms for the AM techno-log­i­cal processes have also been im­proved, al­low­ing for higher geo­met­ri­cal pre­ci­sion. This re­sulted in the de­sign of a full 4-vane RFQ pro­to­type. At the time of the paper sub­mis­sion the full-size RFQ is being man­u­fac­tured and will un­dergo through the strin­gent sur­face qual­ity meas-ure­ments. This paper is dis­cussing novel tech­no­log­i­cal de­vel­op­ments, is pro­vid­ing an eval­u­a­tion of the ob­tained sur­face rough­ness and geo­met­ri­cal pre­ci­sion as well as out­lin­ing the po­ten­tial post-pro­cess­ing sce­nar­ios along with fu­ture tests plans.
* Torims T, et al. First Proof-of-Concept Prototype of an Additive Manufactured Radio Frequency Quadrupole. Instruments. 2021; 5(4):35. https://doi.org/10.3390/instruments5040035
 
slides icon Slides TUOXSP3 [10.031 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOXSP3  
About • Received ※ 20 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOZGD1 Need for Portable Accelerators in Cultural Heritage proton, site, linac, radio-frequency-quadrupole 808
 
  • T.K. Charles
    The University of Liverpool, Liverpool, United Kingdom
  • R.M. Bodenstein, A. Castilla
    JLab, Newport News, Virginia, USA
 
  Ion Beam Ac­cel­er­a­tors (IBA) cen­tres have pro­vided re­searchers with pow­er­ful tech­niques to analyse ob­jects of cul­tural sig­nif­i­cance in a non-de­struc­tive and non-in­va­sive man­ner. How­ever, in some cases it is not fea­si­ble to re­move an ob­ject from the field or mu­seum and trans­port it to the lab­o­ra­tory. In this con­tributed talk, we pre­sent as a man­ner of a short re­view, ex­am­ples of the ben­e­fits pro­vided from these tech­niques in the study of ma­te­r­ial cul­ture and dis­cuss the ini­tial steps to con­sider when in­ves­ti­gat­ing the fea­si­bil­ity of a com­pact ac­cel­er­a­tor that can be taken to sites of cul­tural sig­nif­i­cance for PIXE analy­sis. In par­tic­u­lar, we con­sider the ap­pli­ca­tion of a com­pact, ro­bust 2 MeV pro­ton ac­cel­er­a­tor that can be taken into the field to per­form PIXE mea­sure­ments on rock art. We de­tail the main chal­lenges and con­sid­er­a­tions for such a de­vice.  
slides icon Slides TUOZGD1 [7.603 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOZGD1  
About • Received ※ 09 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST053 Beam Tuning at the FRIB Front End Using Machine Learning simulation, operation, controls, status 983
 
  • K. Hwang, K. Fukushima, T. Maruta, S. Nash, P.N. Ostroumov, A.S. Plastun, T. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  The Fa­cil­ity for Rare Iso­tope Beams (FRIB) at Michi­gan State Uni­ver­sity pro­duced and iden­ti­fied the first rare iso­topes demon­strat­ing the key per­for­mance pa­ra­me­ter and com­ple­tion of the pro­ject. An im­por­tant next step to­ward FRIB user op­er­a­tion in­cludes fast tun­ing of the Front End (FE) de­ci­sion pa­ra­me­ters to main­tain op­ti­mal beam op­tics. The FE con­sists of the ion source, charge se­lec­tion sys­tem, LEBT, RFQ, and MEBT. The strong cou­pling of many ion source pa­ra­me­ters, strong space-charge ef­fects in multi-com­po­nent ion beams, and a not well-known neu­tral­iza­tion fac­tor in the beam­line from the ion source to the charge se­lec­tion sys­tem make the FE mod­el­ing dif­fi­cult. In this paper, we pre­sent our first ef­fort to­ward the Ma­chine Learn­ing (ML) ap­pli­ca­tion for au­to­matic con­trol of the beam ex­it­ing the FE.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST053  
About • Received ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK003 High Power RF Conditioning of the ESS RFQ cavity, vacuum, operation, interlocks 1189
 
  • O. Piquet, A.C. Chauveau, P. Hamel
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Baudrier, M.J. Desmons
    CEA-DRF-IRFU, France
  • B. Jones, D. Noll, A.G. Sosa, E. Trachanas, R. Zeng
    ESS, Lund, Sweden
 
  The 352.21 MHz Radio Fre­quency Quadru­pole (RFQ) for the Eu­ro­pean Spal­la­tion Source ERIC (ESS) has been de­liv­ered by the end of 2019 by CEA/IRFU. The RFQ is de­signed to ac­cel­er­ate a 70 mA pro­ton beam from 75 keV up to 3.62 MeV. It con­sists of a 4-vane res­o­nant cav­ity with a total length of 4.6 m. Two coax­ial power loop cou­plers feed the RFQ with the 1.4 MW of RF power re­quired for beam op­er­a­tion. This paper first pre­sents the main sys­tems re­quired for the RFQ con­di­tion­ing. Then it sum­ma­rizes the main steps and re­sults of this high power RF con­di­tion­ing com­pleted at ESS from June 9 to July 29, 2021 in order to achieve the nom­i­nal field for a pulse length of 3.2ms at the rep­e­ti­tion rate of 14Hz.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK003  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK030 X-Rays Energy Measurements During the RFQ Conditioning at the European Spallation Source detector, electron, ion-source, background 1275
 
  • E. Laface, C.G. Maiano, R. Zeng
    ESS, Lund, Sweden
  • O. Piquet
    CEA-DRF-IRFU, France
 
  The Radio Fre­quency Quadru­pole (RFQ) was con­di­tioned at the Eu­ro­pean Spal­la­tion Source dur­ing spring 2021. We used part of the con­di­tion­ing time to es­ti­mate the ac­cel­er­at­ing po­ten­tial within the RFQ an­a­lyz­ing the x-rays bremsstrahlung ra­di­a­tion emit­ted by the elec­trons re­leased and ac­cel­er­ated in the RFQ. The re­sults of these mea­sure­ments are in good agree­ment with the the­o­ret­i­cal pre­dic­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK030  
About • Received ※ 16 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS038 RFQ NEWGAIN: RF and Thermomechanical Design cavity, linac, proton, insertion 1510
 
  • P. Hamel, N. Sellami
    CEA-IRFU, Gif-sur-Yvette, France
  • M.J. Desmons, O. Piquet, B. Prevet
    CEA-DRF-IRFU, France
 
  Funding: Agence Nationale de la Recherche (ANR)
A new in­jec­tor called NEW­GAIN will be added to the SPI­RAL2 Lin­ear Ac­cel­er­a­tor (LINAC), in par­al­lel with the ex­ist­ing one. It will be mainly com­posed of an ion source and a Radio Fre­quency Quadru­pole (RFQ) con­nected to the su­per­con­duc­tive LINAC of SPI­RAL2. The new RFQ will ac­cel­er­ate at 88.05 MHz par­ti­cles with charge-over-mass ratio (Q/A) be­tween 1/3 and 1/7, from 10 keV/u up to 590 keV/u. It con­sists of a 4-vane res­o­nant cav­ity with a total length of 7 m. It is a CW ma­chine that has to show sta­ble op­er­a­tion, pro­vide the re­quest avail­abil­ity, have the min­i­mum losses in order to pro­vide the high­est cur­rent to the su­per­con­duc­tive LINAC and show the best qual­ity/cost ratio. This paper will pre­sent the pre­lim­i­nary RF de­sign and the ther­mo­me­chan­i­cal study for this RFQ.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS038  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS043 High Power Tests of a New 4-Rod RFQ with Focus on its Mechanical Vibrations simulation, laser, experiment, operation 1523
 
  • S.R. Wagner, D. Koser, K. Kümpel, H. Podlech
    IAP, Frankfurt am Main, Germany
  • K.B. Bahrke-Rein
    TU Darmstadt, Darmstadt, Germany
  • M. Basten
    GSI, Darmstadt, Germany
  • M. Basten
    HIM, Mainz, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  Be­cause of strong me­chan­i­cal vi­bra­tions of the elec­trodes and its sen­si­tiv­ity to changes of ther­mal load, the op­er­a­tional sta­bil­ity of the ex­ist­ing 4-rod RFQ at the High Charge State In­jec­tor (HLI) at the GSI Helmholtz Cen­tre for Heavy Ion Re­search in Darm­stadt, Ger­many, could not be en­sured for all planned op­er­at­ing states. To re­solve this issue and en­sure sta­ble in­jec­tion into the HLI, a new RFQ-pro­to­type, op­ti­mized in terms of vi­bra­tion sup­pres­sion and cool­ing ef­fi­ciency, was de­signed at the In­sti­tute of Ap­plied Physics (IAP) of Goethe Uni­ver­sity Frank­furt. To test the per­for­mance of this pro­to­type and demon­strate the op­er­a­tional sta­bil­ity in terms of me­chan­i­cal vi­bra­tion as well as ther­mal load, high power tests with more than 25’kW/m were per­formed at GSI. After ini­tial con­di­tion­ing, de­tailed vi­bra­tional mea­sure­ments dur­ing high power RF op­er­a­tion using a laser Doppler vi­brom­e­ter were per­formed, which were then com­pared to pre­vi­ously con­ducted sim­u­la­tions using ANSYS. Ul­ti­mately, the abil­ity for sta­ble op­er­a­tion up to high power lev­els with an ef­fi­cient vi­bra­tion sup­pres­sion and mod­er­ate heat­ing have clearly been demon­strated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS043  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS045 Design Validation of High Current Injector Facility at IUAC DELHI cavity, DTL, acceleration, diagnostics 1530
 
  • R.V. Hariwal, R. Ahuja, P. Barua, R.K. Gurjar, S. Kedia, A. Kothari, A. Kumar, M. Kumar, P. Kumar, R. Kumar, R. Kumar, S. Kumar, S. Kumar, P.S. Lakshmy, K. Mal, A.J. Malyadri, Y.M. Mathur, R. Mehta, DK. Munda, U.G. Naik, C. Pal, U.K. Rao, G.O. Rodrigues, C.P. Safvan, A. Sarkar, V.V.V. Satyanarayana, K. Singh, P. Singh, S.K. Sonti, S.K. Suman, T. Varughese, S.R. Venkataramanan, J. Zacharias
    IUAC, New Delhi, India
 
  High Cur­rent In­jec­tor (HCI) is an up­com­ing heavy ion ac­cel­er­a­tor fa­cil­ity at In­ter-Uni­ver­sity Ac­cel­er­a­tor Cen­tre (IUAC), New Delhi, INDIA and it will serve as an al­ter­nate in­jec­tor to the ex­ist­ing Su­per­con­duct­ing Lin­ear Ac­cel­er­a­tor. HCI is de­signed to achieve the max­i­mum en­ergy gain of 1.8 MeV/u for the ions, in­clud­ing the Noble gasses and metal­lic ions, hav­ing A/q less than equal to 6. It con­sists of an 18 GHz High Tem­per­a­ture Su­per­con­duct­ing Elec­tron Cy­clotron Res­o­nance Ion Source, Multi-har­monic Buncher, Radio Fre­quency Quadru­pole (RFQ), Spi­ral Buncher and six in­ter­dig­i­tal H-mode Drift Tube Linac (IH-DTL) cav­i­ties op­er­at­ing at 97 MHz res­o­nant fre­quency. The RFQ ac­cel­er­ates the ions from 8 keV/u to 180 keV/u en­ergy and the six DTL cav­i­ties are used to achieve the max­i­mum en­ergy gain of 1.8 MeV/u. Re­cently, the bunched beam of N5+ was suc­cess­fully ac­cel­er­ated through RFQ and six IH-DTL cav­i­ties and we achieved the de­signed en­ergy, which is an im­por­tant mile­stone of this pro­ject. These re­sults val­i­date the de­sign pa­ra­me­ters of all RF cav­i­ties, ac­cel­er­at­ing to achieve the de­signed en­ergy goal of 1.8 MeV/u. Here, pre­sent sta­tus and fu­ture plans of the pro­ject shall be pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS045  
About • Received ※ 12 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 30 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK001 Status of the Normal Conducting Linac at the European Spallation Source DTL, MMI, LEBT, MEBT 2019
 
  • D.C. Plostinar, C. Amstutz, S. Armanet, R.A. Baron, E.C. Bergman, A.K. Bhattacharyya, B.E. Bolling, W. Borg, S. Calic, M. Carroll, J. Cereijo García, J. Christensson, J.D. Christie, H. Danared, C.S. Derrez, E.M. Donegani, S. Ekström, M. Eriksson, M. Eshraqi, J.F. Esteban Müller, K. Falkland, M.J. Ferreira, A. Forsat, S. Gabourin, A.A. Gorzawski, V. Grishin, P.O. Gustavsson, S. Haghtalab, V.A. Harahap, H. Hassanzadegan, W. Hees, J.J. Jamróz, A. Jansson, M. Jensen, B. Jones, M. Kalafatic, I. Kittelmann, H. Kocevar, S. Kövecses de Carvalho, E. Laface, B. Lagoguez, Y. Levinsen, M. Lindroos, A. Lundmark, M. Mansouri, C. Marrelli, C.A. Martins, J.P.S. Martins, S. Micic, N. Milas, R. Miyamoto, M. Mohammednezhad, R. Montaño, M. Muñoz, G. Mörk, D.J.P. Nicosia, B. Nilsson, D. Noll, A. Nordt, T. Olsson, L. Page, D. Paulic, S. Pavinato, S. Payandeh Azad, A. Petrushenko, J. Riegert, A. Rizzo, K.E. Rosengren, K. Rosquist, M. Serluca, T.J. Shea, A. Simelio, S. Slettebak, A.G. Sosa, H. Spoelstra, A.M. Svensson, L. Svensson, R. Tarkeshian, L. Tchelidze, C.A. Thomas, E. Trachanas, K. Vestin, R. Zeng, P.L. van Velze, N. Öst
    ESS, Lund, Sweden
  • L. Antoniazzi, C. Baltador, L. Bellan, M. Comunian, E. Fagotti, L. Ferrari, M.G. Giacchini, F. Grespan, M. Montis, A. Palmieri, A. Pisent, D. Scarpa
    INFN/LNL, Legnaro (PD), Italy
  • T. Bencivenga, P. Mereu, C. Mingioni, M. Nenni, E. Nicoletti
    INFN-Torino, Torino, Italy
  • I. Bustinduy, A. Conde, D. Fernández-Cañoto, N. Garmendia, P.J. González, G. Harper, A. Kaftoosian, J. Martin, I. Mazkiaran, J.L. Muñoz, A.R. Páramo, S. Varnasseri, A.Z. Zugazaga
    ESS Bilbao, Zamudio, Spain
  • A.C. Chauveau, P. Hamel, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
  • L. Neri
    INFN/LNS, Catania, Italy
 
  The con­struc­tion of the ESS ac­cel­er­a­tor is in full swing. Many key com­po­nents have been de­liv­ered from our in-kind part­ners and in­stal­la­tion, test­ing and com­mis­sion­ing is mak­ing re­mark­able progress. The first ma­chine sec­tion to be com­mis­sioned with beam is the Nor­mal Con­duct­ing Linac (NCL). When com­pleted, a 14 Hz, 2.86 ms pro­ton beam up to 62.5 mA will be trans­ported from the Ion Source, through the Low En­ergy Beam Trans­port (LEBT) line, the Ra­diofre­quency Quadru­pole (RFQ), the Medium En­ergy Beam Trans­port (MEBT) line and the five Drift Tube Linac (DTL) tanks up to 90 MeV where it will be in­jected in the first su­per­con­duct­ing mod­ule of the ma­chine. This paper will high­light re­cent progress across the NCL, pre­sent briefly the first com­mis­sion­ing re­sults and dis­cuss the up­com­ing phases as well as chal­lenges in de­liv­er­ing a ma­chine ca­pa­ble of meet­ing the re­quire­ments for a next gen­er­a­tion spal­la­tion neu­tron fa­cil­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK001  
About • Received ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 02 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS016 On the (Apparent) Paradox between Space-Charge Forces and Space-Charge Effects space-charge, emittance, focusing, linac 2268
 
  • P.A.P. Nghiem
    CEA-IRFU, Gif-sur-Yvette, France
 
  With the ad­vent of high-in­ten­sity linacs, space charge forces are now well known as a major issue caus­ing un­de­sir­able ef­fects on par­ti­cle beam qual­i­ties like emit­tance growth or sud­den losses. They should be stronger when there are more par­ti­cles or when the lat­ter are con­tained in a smaller vol­ume. But a de­tailed ex­am­i­na­tion of the beam along an ac­cel­er­a­tor show that space charge ef­fects are weaker where the beam size is smaller. This ar­ti­cle clar­i­fies this para­dox and re­vis­its the rec­om­men­da­tions on beam sizes in view of mit­i­gat­ing space charge ef­fects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS016  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS049 ESS RFQ Electromagnetic Simulations Using CST Studio Suite simulation, cavity, radio-frequency-quadrupole, radio-frequency 2365
 
  • E. Trachanas, A. Bignami, N. Gazis, B. Jones, R. Zeng
    ESS, Lund, Sweden
  • G. Fikioris, E.N. Gazis, A. Kladas
    National Technical University of Athens, Zografou, Greece
  • P. Hamel, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
 
  The Radio Fre­quency Quadru­pole (RFQ) of the Eu­ro­pean Spal­la­tion Source (ESS), op­er­ates at 352.21 MHz with an RF pulse length of 3.2 ms and rep­e­ti­tion rate of 14 Hz. The RFQ fo­cuses, bunches and ac­cel­er­ates the 62.5 mA pro­ton beam from 75 keV up to 3.6 MeV. In an ef­fort to study and com­pare the re­sults from 3D elec­tro­mag­netic codes, dif­fer­ent mod­els of the RFQ were sim­u­lated with CST Stu­dio suite. This paper pre­sents the se­lec­tion of op­ti­mal pa­ra­me­ters for sim­u­la­tion of the RFQ cav­ity volt­age and com­par­i­son of the re­sults with the RFQ de­sign code Tou­tatis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS049  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOXGD3 Commissioning Status of the RAON Superconducting Accelerator cryomodule, MMI, linac, quadrupole 2399
 
  • H.J. Kim, Y.J. Choi, Y.S. Chung, J. Heo, I.S. Hong, J.-H. Jang, D. Jeon, H. Jin, G.D. Kim, Y.H. Kim, J.W. Kwon, S. Lee, B.-S. Park, M.J. Park, C.W. Son
    IBS, Daejeon, Republic of Korea
  • D.M. Kim
    KUS, Sejong, Republic of Korea
  • E.H. Lim
    Korea University Sejong Campus, Sejong, Republic of Korea
  • S.H. Moon
    UNIST, Ulsan, Republic of Korea
 
  The Rare iso­tope Ac­cel­er­a­tor Com­plex for ON-line ex­per­i­ments (RAON) has been pro­posed as a multi-pur­pose ac­cel­er­a­tor fa­cil­ity for pro­vid­ing beams of ex­otic rare iso­topes of var­i­ous en­er­gies. It can de­liver ions from hy­dro­gen (pro­ton) to ura­nium. Pro­tons and ura­nium ions are ac­cel­er­ated up to 600 MeV and 200 MeV/u re­spec­tively. It can pro­vide var­i­ous rare iso­tope beams which are pro­duced by iso­tope sep­a­ra­tor on-line sys­tem. The RAON in­jec­tor was suc­cess­fully com­mis­sioned in 2021 to study the ini­tial beam pa­ra­me­ters from the main tech­ni­cal sys­tems, such as the ECR ion source and RFQ, and to find the op­ti­mized LEBT and MEBT set­points and match­ing con­di­tions. In this paper, we pre­sent the cur­rent com­mis­sion­ing sta­tus of the RAON in­jec­tor in prepa­ra­tion for the up­com­ing SCL3 beam com­mis­sion­ing.  
slides icon Slides THOXGD3 [6.508 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THOXGD3  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK003 Optimization of Mass Resolution Parameters Combined with Ion Cooler Performance emittance, ion-source, simulation, experiment 2770
 
  • M. Cavenago, C. Baltador, L. Bellan, M. Comunian, E. Fagotti, A. Galatà, M. Maggiore, A. Pisent, C.R. Roncolato, M. Rossignoli, A. Ruzzon
    INFN/LNL, Legnaro (PD), Italy
  • G. Maero, M. Romé
    Universita’ degli Studi di Milano e INFN, Milano, Italy
  • V. Variale
    INFN-Bari, Bari, Italy
 
  High mass res­o­lu­tion spec­trom­e­ters (HRMS) for sep­a­ra­tion of ex­otic ion species in nu­clear physics ex­per­i­ment re­quest a low emit­tance and small en­ergy spread (with D E the peak-to-peak value, and sE the rms value) of the input beam, so that ion cooler de­vices, as a Radio Fre­quency Quadru­pole Cool­ers (RFQC), are typ­i­cally en­vi­sioned. The SPES (Se­lec­tive Pro­duc­tion of Ex­otic Species) pro­ject at LNL re­quests M/(D M) about 20000, rms nor­mal­ized emit­tance in the order of 2 nm, and for 160 keV ions, spread sE about 1 eV. Typ­i­cal lim­its of RFQC[*] and HRMS[**] per­for­mances are dis­cussed, and rel­e­vant for­mu­las are im­ple­mented in easy ref­er­ence tools. The nec­es­sary col­li­sional data are re­viewed, in par­tic­u­lar for Cs+ against He gas, whose pres­sure ranges from 2 to 9 Pa; sta­tus of Milan test bench is briefly up­dated. Prac­ti­cal con­sid­er­a­tion on gas pump­ing, volt­age sta­bil­ity and mag­net de­sign are also in­cluded.
[*] Cavenago et al. Optimization of ion transport in a combined RFQ Cooler …, in ICIS 2021 (in press)
[**] M. Comunian et al. p. 3252 in proceedings IPAC2018 doi:10.18429/JACoW-IPAC2018-THPAK021
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK003  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK026 Development and Test of a Program for Automatic Conditioning of Room Temperature Cavities cavity, experiment, interface, software 2823
 
  • K. Kümpel, M. Märcz, H. Podlech, A. Rüffer, C. Wagner, S.R. Wagner
    IAP, Frankfurt am Main, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  The con­di­tion­ing of room tem­per­a­ture cav­i­ties is a time-con­sum­ing process that can take sev­eral weeks and re­quires the su­per­vi­sion of ex­pe­ri­enced ex­per­i­menters. To sim­plify this process for fu­ture cav­i­ties, a pro­gram is cur­rently being de­vel­oped at the IAP Frank­furt that will sim­plify the ex­per­i­menter’s work and even­tu­ally take it over com­pletely. This paper de­scribes the basic setup of the pro­gram so far, as well as the tests per­formed on dif­fer­ent cav­i­ties so far. In ad­di­tion, an out­look for the next de­vel­op­ment steps and their ap­pli­ca­tion is given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK026  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK057 ESS RFQ Experimental Modal Analysis experiment, damping, software, cavity 2907
 
  • E. Trachanas, A. Bignami, N. Gazis, B. Jones
    ESS, Lund, Sweden
 
  The Eu­ro­pean Spal­la­tion Source-ESS, which is cur­rently under con­struc­tion and com­mis­sion­ing at Lund, Swe­den is a neu­tron source that con­sists of a 2 GeV lin­ear ac­cel­er­a­tor (LINAC) ac­cel­er­at­ing a pro­ton beam to a solid Tung­sten (W) tar­get. The pro­ton beam is pro­duced by the Ion Source (ISRC) and trans­ported through the Low En­ergy Beam Trans­port (LEBT) to the Radio Fre­quency Quadru­pole (RFQ) that will then focus, bunch and ac­cel­er­ate it to 3.6 MeV. The RFQ beam com­mis­sion­ing started in Oc­to­ber 2021, fol­low­ing the RF con­di­tion­ing phase in sum­mer 2021. This cur­rent work pre­sents an ex­per­i­men­tal modal analy­sis per­formed on RFQ in­clud­ing the com­par­a­tive analy­sis with the modal fi­nite el­e­ment sim­u­la­tion using the ANSYS soft­ware suite. Mea­sure­ments were per­formed using ac­celerom­e­ter sen­sors con­nected to a data ac­qui­si­tion sys­tem ex­cited with an im­pact ham­mer. Geo­phones were used in par­al­lel to the modal mea­sure­ments in order to mon­i­tor the seis­mic back­ground of the ac­cel­er­a­tor tun­nel. Ac­quired data were post-processed and analysed with ded­i­cated soft­ware, jux­ta­posed with sim­u­lated re­sults in order to de­ter­mine the res­o­nance fre­quen­cies, struc­tural de­for­ma­tion pat­terns (mode shapes) and error mar­gin be­tween ex­per­i­men­tal and sim­u­lated re­sults.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK057  
About • Received ※ 07 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS022 Production of Radioisotopes for Cancer Imaging and Treatment with Compact Linear Accelerators linac, target, proton, cyclotron 2996
 
  • M. Vretenar, A. Mamaras
    CERN, Meyrin, Switzerland
  • G. Bisoffi
    INFN/LNL, Legnaro (PD), Italy
  • P. Foka
    GSI, Darmstadt, Germany
 
  Ac­cel­er­a­tor-pro­duced ra­dioiso­topes are widely used in mod­ern med­i­cine, for imag­ing, for can­cer ther­apy, and for com­bi­na­tions of ther­apy and di­ag­nos­tics. Clin­i­cal tri­als are well ad­vanced for sev­eral ra­dioiso­tope-based treat­ments that might open the way to a strong re­quest of spe­cific ac­cel­er­a­tor sys­tems ded­i­cated to ra­dioiso­tope pro­duc­tion. While cy­clotrons are the stan­dard tool in this do­main, we ex­plore here al­ter­na­tive op­tions using lin­ear ac­cel­er­a­tors. Com­pared to cy­clotrons, linacs have the ad­van­tage of mod­u­lar­ity, com­pact­ness, and re­duced beam loss with lower shield­ing re­quire­ments. Al­though in gen­eral more ex­pen­sive than cy­clotrons, linacs are com­pet­i­tive in cost for pro­duc­tion of low-en­ergy pro­ton beams, or of in­tense beams of heav­ier par­ti­cles. After a re­view of ra­dioiso­topes of po­ten­tial in­ter­est, in par­tic­u­lar those pro­duced with low-en­ergy pro­tons or he­lium, this paper pre­sents two linac-based iso­tope pro­duc­tion sys­tems. The first is a com­pact RFQ-based sys­tem for PET iso­topes, and the sec­ond is an al­pha-par­ti­cle linac for pro­duc­tion of al­pha-emit­ters. The ac­cel­er­a­tor sys­tems are de­scribed, to­gether with cal­cu­la­tions of pro­duc­tion yields for dif­fer­ent tar­gets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS022  
About • Received ※ 20 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)