Paper | Title | Other Keywords | Page |
---|---|---|---|
MO4RAC04 | First Polarized Proton Collisions at a Beam Energy of 250 GeV in RHIC | polarization, proton, betatron, injection | 91 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. After having provided collisions of polarized protons at a beam energy of 100 GeV since 2001, the Relativistic Heavy Ion Collider~(RHIC) at BNL reached its design energy of polarized proton collision at 250 GeV. With the help of the two full Siberian snakes in each ring as well as careful orbit correction and working point control, polarization was preserved during acceleration from injection to 250~GeV. During the course of the Physics data taking, the spin rotators on either side of the experiments of STAR and PHENIX were set up to provide collisions with longitudinal polarization at both experiments. Various techniques to increase luminosity like further beta star squeeze and RF system upgrades as well as gymnastics to shorten the bunch length at store were also explored during the run. This paper reports the performance of the run as well as the plan for future performance improvement in RHIC. |
|||
|
|||
MO6PFP056 | Electromagnetic SCRF Cavity Tuner | cavity, radio-frequency, linear-collider, collider | 262 |
|
|||
Funding: Department of Energy, U.S.A. A novel prototype of SCRF cavity tuner is being designed and tested at Fermilab. This is a superconducting C-type iron dominated magnet having a 10 mm gap, axial symmetry, and a 1 Tesla field. Inside the gap is mounted a superconducting coil capable of moving ± 1 mm and producing a longitudinal force up to ± 1.5 kN. The static force applied to the RF cavity flanges provides a long- term cavity geometry tuning to a nominal frequency. The same coil powered by a fast AC current pulse delivers mechanical perturbation for fast cavity tuning. This fast mechanical perturbation could be used to compensate a dynamic RF cavity detuning caused by cavity Lorentz forces and microphonics. A special configuration of magnet system was designed and tested. |
|||
MO6RFP086 | Design, Construction and Operation of the Dutch RF-Photoguns | cavity, electron, cathode, plasma | 569 |
|
|||
Three different S-band rf-photoguns have been constructed by Eindhoven University of Technology in the Netherlands: A 1.5-cell, a 100 Hz 1.6-cell, and a 2.6-cell. They share a design concept that differs from the ‘standard’ BNL-gun in many aspects: Individual cells are clamped and not brazed saving valuable manufacturing time and allowing damaged parts to be replaced individually. The inner geometry employs axial incoupling, inspired by DESY, to eliminate any non-cylindrically symmetric modes. Elliptical irises, identical to a 2.6-cell design of Strathclyde University, reduce the maximum field on the irises and thereby reduce electrical breakdown problems. The manufacturing process uses single-point diamond turning based on a micrometer-precise design. The overall precision is such that the clamped cavities are spot-on resonance and have near-perfect field balance without the need for any post-production tuning. Operational performance of the three Dutch rf-photoguns will be presented. |
|||
TU2PBC01 | Space-Charge Simulations of Non-Scaling FFAGs Using PTC | simulation, space-charge, acceleration | 673 |
|
|||
Funding: Supported in part by the DOE Office of Science, Office of Nuclear Physics under grant No. DE-FG02-06ER84508. Non-scaling FFAGs are sensitive to a slew of resonances during the acceleration ramp. An important consideration - because it affects the amount of rf power required - will be the speed at which resonances must be crossed. We present simulations of possible non-scaling FFAGs, focusing especially on the effects of space charge, using newly developed capabilities in the code PTC*. * E. Forest, Y. Nogiwa, F. Schmidt, "The FPP and PTC Libraries", ICAP'2006. |
|||
|
|||
TU3PBI01 | Beam Dynamics and Low Loss Operation of the J-PARC Main Ring | injection, space-charge, coupling, emittance | 714 |
|
|||
For operation of the JPARC Main Ring, low loss of the high-intensity bunches during the injection and acceleration processes is crucial to avoid radiation damage of the machine. This requires identification and correction the most dangerous resonances, which should be done in combination with the collective effects, in particular, the low energy space charge effects. In frame of this talk we review the status of the Main Ring commissioning process and compare it with the simulation results for the low intensity beam. For the future operation of the Main Ring with the moderate beam power we review the status of the simulation work and discuss the budget of the beam losses. |
|||
TU3PBI02 | Linac Code Benchmarking with High Intensity Experiments at the UNILAC | DTL, emittance, simulation, space-charge | 719 |
|
|||
Funding: We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 ‘‘Structuring the European Research Area’’ program (CARE, Contract No. RII3-CT-2003-506395). Beam dynamics experiments with high intensity beams have been conducted at the GSI UNILAC in 2006-2008 with the goal of benchmarking four major simulation codes, i.e. DYNAMION, PARMILA, TraceWin/PARTRAN and LORASR with respect to transverse emittance growth along a DTL. The experiments comprised measurements of transverse phase space distributions in front of as well as behind the DTL. Additional longitudinal bunch length measurements at the DTL entrance allowed for estimate and control of mismatch in all three planes. Measured effects of mismatch and of theoretically predicted space charge resonances (equipartitioning and others) are compared with simulations for a wide range of transverse phase advance along the DTL. This contribution is the first report on the successful measurement of a space charge driven fourth order resonance in a linear accelerator. |
|||
|
|||
TU5PFP010 | Multipactor in Dielectric Loaded Accelerating Structures | multipactoring, electron, simulation, vacuum | 827 |
|
|||
Funding: Work supported by the US Department of Energy. The development of high gradient rf driven dielectric accelerating structures is in part limited by the problem of multipactor. The first high power experiments with an 11.424-GHz rf driven alumina accelerating structure exhibited single surface multipactor. Unlike the well understood multipactor problem for dielectric rf windows, where the rf electric field is tangential and the rf power flow is normal to the dielectric surface, strong normal and tangential rf electric fields are present from the TM01 accelerating mode in the DLA and the power flow is parallel to the surface at the dielectric-beam channel boundary. While a number of approaches have been developed, no one technology for MP mitigation is able to completely solve the problem. In this paper we report on numerical calculations of the evolution of the MP discharge, and give particular attention to MP dependence on the rf power ramp profile and the use of engineered surface features on the beam channel wall to interrupt the evolution of the multipactor discharge. |
|||
TU5PFP014 | Novel Acceleration Structure Using Slot Resonance Coupling | coupling, linac, cavity, proton | 839 |
|
|||
We describe a novel acceleration structure for acceleration of electron and ion beams where the cell-to-cell coupling is provided by slot resonances in the wall of adjacent accelerator cells. As with the side-coupled linac, the concept allows for the operation of a standing-wave structure in a phase and amplitude stabilized pi/2 mode. We explore the applications of such a structure to electron and ion accelerators. |
|||
TU5PFP029 | Preliminary Design of RF Cavities for the Cyclotron CYCHU-10 | cavity, cyclotron, vacuum, coupling | 882 |
|
|||
Funding: Nation Nature Science Foundation of China,10435030 At Huazhong University of Science and Technology (HUST), the design study of a 10 MeV compact cyclotron CYCHU-10 for the application of Positron Emission Tomography (PET) has been developed since 2007. This paper describes the recent status of RF cavities including numerical calculation results of basic parameters, the capacitive trimmer to overcome frequency shift when in operation and the construction and cold test of the 1:1 scale prototype. The inductive coupling loop design and matching simulation with the RF power generator are also presented |
|||
TU5PFP030 | Design and Test of 10 kW RF Amplifier Based on Direct Digital Synthesizer | cavity, rf-amplifier, impedance, cyclotron | 885 |
|
|||
Funding: Work supported by National Nature Science Foundation of China, 10435030 In order to reduce the cost of the signal generator comprising a high performance direct digital synthesizer (DDS), the method of picking up a desired aliased signal of DDS output is adopted in the study. The chip AD9850 is used to synthesize RF signal in the system, and the amplitude modulation of the system is achieved by altering the external connection resistance of the chip. The output frequency is tunable from 99.5 to 101MHz. The principle and the test results of the signal synthesizer will be presented. The amplifier based on tetrode technology can deliver the 10kW RF power in a continuous wave (CW) mode of operation. The driver amplifier consists of two solid-state modules, and it can provide the tetrode with up to 300W input power. The tetrode operates in the grounded cathode configuration. The conceptual design of the final stage amplifier will also be demonstrated in this paper. |
|||
TU5PFP035 | Proof-of-Principle Experiment of a Ferroelectric Tuner for a 1.3 GHz Cavity | cavity, impedance, gun, coupling | 897 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A novel tuner has been developed by the Omega-P company to achieve fast control of the accelerator RF cavity frequency. The tuner is based on the ferroelectric property which has a variable dielectric constant as function of applied voltage. Tests using a Brookhaven National Laboratory (BNL) 1.3 GHz RF cavity have been carried out for a proof-of-principle experiment of the ferroelectric tuner. Two different methods were used to determine the frequency change achieved with the ferroelectric tuner. The first method is based on a S11 measurement at the tuner port to find the reactive impedance change when the voltage is applied. The reactive impedance change then is used to estimate the cavity frequency shift. The second method is a direct S21 measurement of the frequency shift in the cavity with the tuner connected. The estimated frequency change from the reactive impedance measurement due to 5 kV is in the range between 3.2 kHz and 14 kHz, while 9 kHz is the result from the direct measurement. The two methods are in reasonable agreement. The detail description of the experiment and the analysis will be discussed in the paper. |
|||
TU5PFP062 | Excitation of a Traveling Wave in a Superconducting Structure with Feedback | feedback, cavity, accelerating-gradient, coupling | 969 |
|
|||
The accelerating gradient required for the ILC project exceeds 30 MeV/m. With current technology the maximum acceleration gradient in SC structures is determined mainly by the value of the surface RF magnetic field. In order to increase the gradient, the RF magnetic field is distributed homogeneously over the cavity surface (low-loss structure), and coupling to the beam is improved by introducing aperture "noses" (re-entrant structure). These features allow gradients in excess of 50 MeV/m to be obtained for a singe-cell cavity. Further improvement of the coupling to the beam may be achieved by using a TW SC structure with small phase advance per cell. We have demonstrated that an additional gradient increase by up to 46% may be possible if a pi/2 TW SC structure is employed. However, a TW SC structure requires a SC feedback waveguide to return the few GW of circulating RF power from the structure output back to the structure input. Advantages and limitations of different techniques of exciting the traveling wave in this structure are considered, including an analysis of mechanical tolerances. We also report on investigations of transient processes in the SC TW structure. |
|||
TU5PFP088 | Integrating a Traveling Wave Tube into an AECR Ion Source | ion, cyclotron, ion-source, controls | 1038 |
|
|||
Funding: This work was supported by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of Nuclear Physics of the US Department of Energy under Contract No. DE-AC02-05CH11231. A RF system of 500W - 10.75 to 12.75 GHz was designed and integrated into the Advanced Electron Cyclotron Resonance (AECR) ion source of the 88-inch Cyclotron at Lawrence Berkeley National Laboratory. The AECR produces ion beams for the Cyclotron giving large flexibility of ion species and charge states. The broadband frequency of a Traveling Wave Tube (TWT) allows modifying the shape of the annular ellipsoidal-shaped volume that couples and heats the plasma. Details of the RF source and Automatic Gain Control Unit designs for the TWT and integration with the AECR source are provided. |
|||
TU5PFP098 | The Elettra Radiofrequency System Status and Developments | cavity, HOM, storage-ring, booster | 1066 |
|
|||
The full energy injection is now the standard procedure for the Elettra synchrotron radiation light source. The four RF storage ring plants have been benefited by this procedure in terms of reliability and stability of operation. The injector booster RF plant is running well. A new High Order Mode (HOM) diagnostic board has been implemented using the radiofrequency (RF) cavity’s signal to improve the HOM’s detection. The analysis and the performances of the new Inductive Output Tube (IOT)based RF power transmitter are presented. |
|||
TU5RFP044 | An Optic with Small Vertical Beta Function for the CAMD Light Source | injection, lattice, quadrupole, wiggler | 1189 |
|
|||
At the CAMD Light Source a new optic has been developed for the lattice having small vertical beta function in each of the 4 long straight sections. This optic will be necessary to operate the multipole wigglers with small vertical aperture which are planned to be installed in the near future. Results are presented of the tests which have been made with this optic, particularly in the critical area of injection, which is made low energy. The lattice functions have been characterized using LOCO software and the reduced vertical aperture confirmed with an adjustable scraper. |
|||
TU6PFP050 | Exploring the Feasibility of a Stand Alone Muon Facility for MuSR Research | proton, target, synchrotron, cyclotron | 1394 |
|
|||
The current paper discusses possible designs for a high intensity stand alone muon source for muSR studies of condensed matter. In particular we shall focus upon the potential implementation of a new generation of high power but relatively compact and cost effective proton drivers based on non-scaling fixed field alternating gradient (ns-FFAG) accelerator technology. The technical issues which must be addressed are also considered. |
|||
TU6PFP087 | High Intensity Beams from the CERN PS Booster | injection, space-charge, impedance, linac | 1497 |
|
|||
The CERN Proton Synchrotron Booster (PSB) has been running for more than 30 years. Originally designed to accelerate particles from 50 to 800 MeV, later upgraded to an energy of 1 GeV and finally 1.4 GeV, it is steadily being pushed to its operational limits. One challenge is the permanent demand for intensity increase, in particular for CNGS and ISOLDE, but also in view of LINAC4. As it is an accelerator working with very high space charge during the low energy part of its cycle, its operational conditions have to be precisely tuned. Amongst other things resonances must be avoided, stop band crossings optimized and the machine impedance minimized. Recently, an operational intensity record was achieved with >4.25·1013 protons accelerated. An orbit correction campaign performed during the 2007/2008 shutdown was a major contributing factor to achieving this intensity. As the PSB presently has very few orbit correctors available, the orbit correction has to be achieved by displacing and/or tilting some of the defocusing quadrupoles common to all 4 PSB rings. The contributing factors used to optimize performance will be reviewed. |
|||
TU6RFP004 | Progress on the R&D of the CSNS Power Supply System | power-supply, DTL, controls, linac | 1541 |
|
|||
The 1.6GeV proton synchrotron proposed in the CSNS Project is a 25Hz rapid-cycling synchrotron (RCS) with 80MeV Linac. Beam power is aimed to 100kW at 1.6GeV. In this paper the designs of the prototype of DTL-Q power supply and the prototype of the resonant network with one mesh exciting in series will be introduced. |
|||
TU6RFP016 | Klystron Cathode Heater Power Supply System Based on the High-Voltage Gap Transformer | klystron, power-supply, cathode, high-voltage | 1562 |
|
|||
Funding: This work was performed within the framework of the agreement between Deutsches Elektronen-Synchrotron (DESY, Hamburg) and BINP SB RAS (Russia, Novosibirsk), "Attachment N 18". Power system for the klystron cathode heater power supply has been developed to transfer 800 Watts up to 130 kV potential based on the high-voltage gap transformer. Power transfer has been implemented resonant way on the frequency of 19.5 kHz using coupled LC-loops with further transformation to DC. Transformer coupling factor is of 0.58, high-voltage gap is 49 mm, and maximum calculated electric field intensity is 35 kV/cm. Primary winding is powered by the full bridge inverter using phase shifted pulse modulation. This inverter topology provides soft switching of the transistors in a wide range of power regulation (from 18 up to 800 Watts) without an auxiliary active resonant snubber circuits. High stability (0.3%) of the output power has been reached using proportional regulation in the feedback circuit. The achieved power conversion efficiency of inverter is more than 0.95 in the regulation range; efficiency of the whole power system is more than 0.88. The reliable operation of the power system is guaranteed on three types of klystrons (Toshiba E3736; Thales TH1801; CPI VKL8301). The work has been performed within the European XFEL project. |
|||
TU6RFP027 | Resonant Third-Integer Extraction from the PS2 | extraction, sextupole, injection, quadrupole | 1593 |
|
|||
For the proposed PS2 accelerator several extraction systems are needed, including a slow third-integer resonant extraction. The requirements are presented together with the conceptual considerations for the sextupole locations and strengths, the separatrices at the extraction elements and the aperture implications for the overall machine. Calculations of the phase space separatrices have been computed with a new code for the physics of slow resonant extraction, which is briefly reviewed. Implications for the extraction equipment design and for the injection-extraction straight section optics are discussed. |
|||
TU6RFP028 | Laser Stripping for the PS2 Charge-Exchange Injection System | laser, emittance, injection, dipole | 1596 |
|
|||
Laser stripping for an H- injection system into the proposed PS2 accelerator could provide an attractive alternative to the use of a conventional stripping foil. In this paper possible concepts for a 4 GeV laser stripping system are outlined and compared, using either laser or magnetic initial stripping steps and a resonant excitation of the intermediate H0 atom, followed by a final magnetic stripping. Issues of laser power, overall efficiency and emittance growth are discussed. |
|||
TU6RFP034 | SIS100/300 Extraction System Design Beam Dynamics and Technological Challenges | sextupole, extraction, septum, ion | 1614 |
|
|||
The FAIR heavy ion synchrotrons SIS100/300 will provide heavy ion and proton beams with variable time structure. Fast extraction of compressed single bunches from SIS100, fast beam transfer between SIS100 and SIS300 and slow extraction from SIS100 and SIS300 will be provided. High average beam intensities and the generation of an uninterrupted linac-like beam are enabled by combining both heavy ion synchrotrons in different operation modes (fast acceleration and stretcher operation). In order to reduce beam loss at slow extraction of intense heavy ion beams and to minimize the beam load in subsequent accelerator structures, dedicated ion optical settings of the basic lattice functions and higher order corrections will be applied. However, the tight geometrical constraints in the rather short straight sections and the need to extract from both synchrotrons, fast and slow, at the same position and in parallel to the beam transport system, require operation parameters of the extraction devices close to the limits of technical feasibility. Higher order beam dynamics simulations and technical developments will be presented. |
|||
TU6RFP066 | AGS Fast Spin Resonance Jump, Magnets and Power Supplies | power-supply, quadrupole, vacuum, proton | 1699 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC underContract No. DE-AC02-98CH10886 with the U.S. Department of Energy. In order to cross more rapidly the 82 weak resonances caused by the horizontal tune and the partial snakes, we plan to jump the horizontal tune 82 times during the acceleration cycle, 41 up and 41 down*. To achieve this, the magnets creating this tune jump will pulse on in 100 micro-seconds, hold the current flat for about four milli-seconds and zero the current in another 100 micro-seconds. The magnets are old laminated beam transport magnets with longitudinal shims closing the aperture to reduce inductance and power supply current. The power supply uses a high voltage capacitor discharge to raise the magnet current, which is then switched to a low voltage supply, and then the current is switched back to the high voltage capacitor to zero the current. The current in each of the magnet pulses must match the order of magnitude change in proton momentum during the acceleration cycle. The magnet, power supply and cabling will be described with coast saving features and operational experience. *Overcome Horizontal Depolarizing Resonances in the AGS with Tune Jump |
|||
TU6RFP076 | Measurement of Longitudinal and Transverse Impedance of Kicker Magnets Using the Coaxial Wire Method | impedance, kicker, coupling, simulation | 1726 |
|
|||
Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, even above the Curie temperature of ferrite. In addition the impedance can contribute to beam instabilities. In this paper different variants of the coaxial wire method, both for measuring longitudinal and transverse impedance, are briefly discussed in a tutorial manner and do's and don'ts are shown on practical examples. In addition we present the results of several impedance measurements for SPS kickers using the wire method and compare those results with theoretical models. |
|||
WE1PBI02 | Interactions of Microwaves and Electron Clouds | electron, cyclotron, radiation, plasma | 1802 |
|
|||
The modification of microwave signals passing through an electron cloud can be used as a diagnostic tool for detecting its presence and as a measure for its effective density. This observation method was demonstrated in pioneering measurements at the CERN SPS in 2003 with protons and at PEP-II in 2006 with positron beams in the particle accelerator field. Results and applications of this technique are discussed as well as limitations and possible difficulties. A strong enhancement of the electron related signals due to cyclotron resonance is theoretically predicted and has been observed in different machines. The application of this method can also be extended for space applications and plasma physics where microwave diagnostics is known and used since many years. The question whether suitably chosen microwaves might also be employed for electron-cloud suppression will be addressed. An electron cloud may also emit microwaves itself and the intensity of this emission depends on external parameters such as the electrical bias field and resonator frequencies related to trapped mode resonances in a beam-pipe. |
|||
|
|||
WE1PBI03 | Cyclotron Resonances in Electron Cloud Dynamics | electron, cyclotron, simulation, wiggler | 1807 |
|
|||
Funding: This work was supported by the Office of Science, U. S. Department of Energy, under Contract No. DE-AC02-05CH11231. A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb << 2*π/ωc, (lb = bunch duration, ωc = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor of approximately 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density "stripes" of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed. C.M. Celata is presently also a visitor in Physics, Mathematics, and Astronomy at California Institute of Technology. |
|||
|
|||
WE3PBI02 | Study of Beam Dynamics during the Crossing of the Third-Order Resonance at VEPP-4M | damping, octupole, betatron, collider | 1894 |
|
|||
The influence of resonances on the beam dynamics in storage rings is of substantial interest to accelerator physics. For example, a fast crossing of resonances occurs in the damping rings of future linear colliders during the beam damping (due to the incoherent shift) can result in a loss of particles. We have studied experimentally the crossing of resonances of different power near the working point of the VEPP-4M storage ring. Observation of the beam sizes and particle losses was performed with a single-turn time resolution. Comparison with the numerical simulation has been made and will be presented alongside the experimental results. |
|||
|
|||
WE3GRI03 | Development of CW Laser Wire in Storage Ring and Pulsed Laser Wire | laser, cavity, electron, controls | 1920 |
|
|||
Future accelerators require a high resolution beam profile monitor that measures the beam non-destructively and works at high beam intensity. Laser based beam monitors can be the solution. It uses a focused laser beam to scan the electron beam while detecting the Compton scattered photon. Accelerator Test Facility at KEK has been developing various types of Laser Wire monitors. CW laser wire with build-up optical cavity has been used to measure the small emittance beam at the damping ring. Pulsed laser wire has been developed to measure a small focused beam at the extraction line. Performance of these systems will be presented. |
|||
|
|||
WE5PFP024 | Optimal Timing for Spark Recovery in the TRIUMF Cyclotron | damping, cyclotron, TRIUMF, cavity | 2045 |
|
|||
In the TRIUMF cyclotron when a spark occurs it is necessary to shut off the RF drive and to initiate a RF restart procedure. It is also desirable to restore the full operational dee voltage as soon as possible in order to prevent thermal detuning of the resonant cavity. However, when the RF drive is shut off, the disappearance of Lorentz force on the resonator hot-arms causes the hot-arms to vibrate at their mechanical resonant frequency. When the RF field is being restored, the electromagnetic resonance is coupled to the mechanical resonance through the Lorentz force, and the amplitudes of both the mechanical vibration and the RF field depend on the timing when RF drive is re-applied. Computer simulations and experimental results will be presented to demonstrate that an optimum exists as to when to initiate the RF restart. With this optimal timing, the Lorentz force is used to damp the mechanical vibrations of the hot-arms. The reduction in hot-arm vibrations increases the probability of successful restarts as well as reduces the stress on the RF components. |
|||
WE5PFP025 | Numerical Calculus of Resonant Frequency Change by 3D Reconstruction of Thermal Deformed Accelerator Tube | cavity, simulation, electron, linac | 2048 |
|
|||
Funding: "Collinear Load for Accelerators and R&D on High Power Microwave Absorbed Material" No.10775128 From National Natural Science Foundation of China Thermal deformation caused by Non-uniform temperature distribution in disk-loaded waveguide will affect the resonant frequency of LINAC deeply. Formerly, researchers evaluated it by experiments or experience and gave their conclusion roughly and linearly. A new approach of integration of multi-disciplinary is adopted to study the relationship more accurately. After loading the loss RF power on the accelerator tube wall, the thermal deformation is calculated in software I-DEAS, and a deformed finite element model is obtained. Then nodes on inner surfaces of the cavities were extracted and sort by a customized program. According to these nodes, a new solid model is reconstructed with a self developed 3D reconstruction technology in ANSYS. B-Spline interpolation technique is used to fit a group of curves first, and then to reconstruct NURBS surfaces. The final reconstructed deformed solid model, obtained by closing the surfaces, can be exported in IGES format which is used to recalculate the resonant frequency in Microwave Studio again. The error of the reconstruction can be controlled within 3 micrometers. The resonant frequency change of every cavity can be accurately calculated. Parietti L, etc., Thermal structural analysis and frequency shift ** |
|||
WE5PFP064 | Cavity Load Impedance Diagnostic at the Australian Synchrotron | cavity, impedance, storage-ring, beam-loading | 2153 |
|
|||
RF cavities are routinely detuned slightly from resonance to maintain Robinson stability of the beam as beam loading increases. Detuning the cavities results in a reduction of the overall energy efficiency of the RF and can waste many MW hours of energy per year. It is therefore desirable to only detune as much as required by the beam loading to maintain stability. A new system for monitoring the load impedance of the Storage Ring RF cavities has been developed at the Australian Synchrotron. The system utilises the Analogue devices AD8302 chip to monitor the load impedance of the Cavities and allow for more efficient detuning of the system. An overview and commissioning results of this system will be presented. |
|||
WE5PFP069 | Alternative Cavity Tuning Control for CRM Cyclotron | cavity, pick-up, cyclotron, controls | 2165 |
|
|||
In the commissioning phase of CRM cyclotron, the RF cavity resonance frequency changes rapidly due to cavity thermal instability and electronics interference inside tuning loop. To solve the later issue, a set of cavity tuning control electronics has been re-designed, fabricated and tested in 2008. The new tuning control electronics and related experimental results will be described in this paper. A wide dynamic range phase detector with double balanced mixer were selected to detect the cavity detuning angle by comparing the phase difference between the cavity pickup signal and cavity driven signal. One analogue P.I. controller was utilized for loop regulation, taking advantage of shorter developing time. A current amplifier is also included to magnify the driven ability of the P.I. regulator for cavity fine tuning motors. A careful layout has been performed to avoid interference between RF part, DC small signal part and the current amplifier part. The desk experiment yields good phase detection sensitivity and acceptable stability after the mixer reaches natural thermal balance. |
|||
WE5PFP078 | Development of SCRF Cavity Resonance Control Algorithms at Fermilab | cavity, controls, feedback, damping | 2192 |
|
|||
Funding: Work supported by U.S. Department of Energy under contract DE-AC02-76CH03000 Progress has been made at Fermilab on the development of feed-forward and feed-back algorithms used to compensate SCRF cavity detuning, which is caused by Lorentz Forces and microphonics. Algorithms that have been developed and tested for the 1.3GHz (ILC-style) SCRF cavities (Capture Cavity II) will be reported. |
|||
WE5PFP100 | Beam Loading Effects on the RF Control Loops of a Double-Harmonic Cavity System for FAIR | cavity, controls, beam-loading, simulation | 2249 |
|
|||
Funding: This work was partly supported by Deutsche Telekom Stiftung. The effects of heavy beam loading on the RF control loops of a double-harmonic cavity system are examined. This cavity system that will be realized at the GSI Helmholtzzentrum für Schwerionenforschung in the scope of the SIS18 upgrade program consists of a main broadband cavity and a second harmonic narrowband cavity. The cavities comprise both an amplitude and a phase feedback loop. In addition, the narrowband cavity includes a feedback loop which controls its resonance frequency to follow the main RF frequency. After modelling the cavity system and the feedback loops, an analytic controller design is presented. In addition, longitudinal beam dynamics are added to the cavity model to allow a detailed simulation of the cavity-beam interaction. Realistic simulation results are given for an acceleration cycle of heavy-ions to demonstrate the performance of the RF control loops. |
|||
WE5RFP048 | The Use of Phase Shifters for the Optimization of Free Electron Lasers' Performance | FEL, electron, undulator, radiation | 2379 |
|
|||
In single-pass FELs, for the amplification process to be effective, it is necessary to compensate the phase advance of photons with respect to electrons in the break region between undulators. In fact, most of the FELs are based on the use of phase shifters between different undulator sections in order to allow the control of the relative phase advance. In this work we present different methods in which the use of phase shifters can be useful for a further improvement of the FEL performance. |
|||
WE6PFP006 | Overview of Magnetic Nonlinear Beam Dynamics in RHIC | sextupole, dipole, lattice, dynamic-aperture | 2489 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. In the article we review the nonlinear beam dynamics from nonlinear magnetic fields in the Relativistic Heavy Ion Collider. The nonlinear magnetic fields include the magnetic field errors in the interaction regions, chromatic sextupoles, and sextupole component from arc dipoles. Their effects on the beam dynamics and long-term dynamic apertures are evaluated. The online measurement and correction methods for the IR nonlinear errors, nonlinear chromaticity, and horizontal third order resonance are reviewed. The overall strategy for the nonlinear effect correction in the RHIC is discussed. |
|||
WE6PFP052 | Changing the PEP-II Center-of-Mass Energy down to 10 GeV and up to 11 GeV | luminosity, permanent-magnet, interaction-region, background | 2613 |
|
|||
Funding: Work supported by the Department of Energy under contract number DE-AC03-76SF00515. The PEP-II B-Factory was designed and optimized to run at the Upsilon 4S resonance (10.580 GeV with a 9 GeV e- beam and a 3.1 GeV e+ beam). The interaction region (IR) used permanent magnet dipoles to bring the beams into a head-on collision. The first focusing element for both beams was also a permanent magnet. The IR geometry, masking, beam orbits and beam pipe apertures were designed for 4S running. Even though PEP-II was optimized for the 4S, we successfully changed the center-of-mass energy (Ecm) down to the Upsilon 2S resonance and completed an Ecm scan from the 4S resonance up to 11.2 GeV. The luminosity throughout these changes remained near 1x1034 cm-2s-1 . The Ecm was changed by moving the energy of the high-energy beam (HEB). The beam energy differed by more than 20% which produced significantly different running conditions for the RF system. The energy loss per turn changed 2.5 times over this range. We describe how the beam energy was changed and discuss some of the consequences for the beam orbit in the interaction region. We also describe some of the RF issues that arose and how we solved them as the high-current HEB energy changed. |
|||
WE6PFP093 | Reverse Emittance Exchange for Muon Colliders | emittance, collider, betatron, simulation | 2721 |
|
|||
Funding: Supported in part by USDOE STTR Grant DE-FG02-05ER86253 Muon collider luminosity depends on the number of muons in the storage ring and on the transverse size of the beams in collision. Six-dimensional cooling schemes now being developed will reduce the longitudinal emittance of a muon beam so that smaller high frequency RF cavities can be used for later stages of cooling and for acceleration. However, the bunch length at collision energy is then shorter than needed to match the interaction region beta function. New ideas to shrink transverse beam dimensions by lengthening each bunch (reverse emittance exchange and bunch coalescing) will help achieve high luminosity in muon colliders with fewer muons. Analytic expressions for the reverse emittance exchange mechanism are derived, including a new resonant method of beam focusing. Correction schemes for the aberrations were explored, and a lattice to implement them was proposed. To mitigate space charge detuning and wake field effects, a scheme was invented to coalesce smaller intensity bunches after they are cooled and accelerated to high energy into intense bunches suitable for a muon collider. |
|||
WE6RFP031 | Prospects for Integrating a Hollow Electron Lens into the LHC Collimation System | electron, collimation, proton, simulation | 2856 |
|
|||
Funding: Work supported in part by the U.S. Department of Energy contract DE-AC02-76SF00515 It has been proposed to use a hollow electron lens with the LHC beam collimation system*. The hollow electron beam would be used as a beam scraper and positioned at a closer σ than the primary collimators to increase the halo particle diffusion rate striking the primaries. In this paper we use multi-turn beam tracking simulations to analyze the effectiveness of such a lens when integrated into the LHC collimation system. *Shiltsez, V. et al. "LHC Particle Collimation by Hallow Electron Beams," Proceedings EPAC08, MOPC098 (2008) |
|||
WE6RFP038 | A FEA Study of the Stress Waves Generated in the T2K Beam Window from the Interaction with a High Power Pulsed Proton Beam | proton, target, simulation, vacuum | 2875 |
|
|||
The target station of the T2K neutrino facility requires a beam window to separate the target chamber, containing helium at atmospheric pressure, from the secondary beam line, which is maintained at ultra high vacuum. In addition to withstanding this differential pressure, the window must survive induced stresses due to intense heating resulting from interaction with a 0.75 MW pulsed proton beam. The design consists of a hemispherical double window with forced convection helium cooling in the volume enclosed, manufactured from titanium alloy. Preliminary analysis suggested that 'shock' waves induced by the pulsed nature of the beam will form the dominant mode of stress. The finite element software ANSYS Mechanical (V10) has been used to simulate the effect of beam impingement on a variety of window thicknesses in an attempt to find the optimum geometry. Results have shown that through thickness stress waves can be amplified if successive bunches arrive in phase with the waves generated by previous bunches. Therefore, thickness has been shown to be a critical variable in determining the window’s resistance to induced thermal shock. |
|||
WE6RFP054 | Design and Performance of Resonance Frequency Control Cooling System of PEFP DTL | controls, DTL, cavity, proton | 2920 |
|
|||
Funding: Work supported by PEFP and MEST in Korea The objectives of the cooling system of Proton Engineering Frontier Project (PEFP) Drift Tube Linac (DTL) operated in combination with the low-level RF system (LLRF) are to regulate the resonant frequency of the drift tube cavities of 350 MHz. To provide an effective means of bringing the PEFP DTL up for a resonance condition within ±5 kHz, the prototype of the cooling system has been designed and fabricated to investigate the performance features for the servo stabilization of the cavity resonant frequency. As a result, it is estimated that the resonant frequency could be regulated less than ±1 kHz with this proposed feedback temperature controlled cooling system although introducing a little nonlinear features as the reference operating temperature changes. This report describes the design and performance test results of a cooling system, including the size of water pumping skid components and the temperature control scheme. |
|||
WE6RFP069 | Multi-Mode Cavity Design to Raise Breakdown Threshold | cavity, acceleration, vacuum, higher-order-mode | 2955 |
|
|||
Funding: Sponsored in part by US Department of Energy, Office of High Energy Physics. A multi-mode cavity design for a two-beam accelerator aimed to achieve an accelerating gradient exceeding 150 MeV/m is reported. The cavity has a square cross section which allows excitation in several equidistantly-spaced eigen modes by a bunched drive beam in such a way that the RF fields reach peak values only during time intervals that can be much shorter than for excitation of a single mode, thus exposing the cavity surfaces to strong fields for shorter times. This feature is expected to raise the breakdown and pulse heating thresholds. In order to measure an increase in breakdown threshold surface electric field due to this reduction of exposure time during each RF period, a high-power experiment is planned. Preliminary calculations show that such a study in which comparison of breakdown threshold would be made of a conventional single-mode cavity with a multi-mode cavity can in principle be carried out using the drive beam of the CTF-3 test stand at CERN. |
|||
TH5PFP016 | Tune Shift due to Crossing Collision and Crab Collision | simulation, cavity, luminosity, quadrupole | 3223 |
|
|||
Funding: This work was supported by the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395). The use of crab cavities in the LHC may not only raise the luminosity, but it could also complicate the beam dynamics, e.g. crab cavities might not only cancel synchro-betatron resonances excited by the crossing angle but they could also excite new ones. In this paper, we use weak-strong beam-beam model to study the incoherent linear tune shift of the weak beam, for the crossing collision case and crab collision case with a finite crossing angle. The tune shift is also compared among the head-on collision, crossing collision and crab collision cases, both analytically and numerically. |
|||
TH5PFP022 | High Intensity Benchmarking Studies in the SIS18 Synchrotron | beam-losses, synchrotron, space-charge, emittance | 3239 |
|
|||
The prediction of beam loss for long term storage of a high intensity beam is a challenging task essential for the SIS100 design. On this ground an experimental campaign using a high intensity beam has been performed at GSI on the SIS18 synchrotron with the purpose of extending a previous benchmarking experiment made at the CERN-PS in the years 2002-2003. We report here the results of this experimental campaign and the benchmarking with the simulation predictions. |
|||
TH5PFP023 | High Intensity Nonlinear Dynamics in SIS100 | beam-losses, space-charge, emittance, simulation | 3242 |
|
|||
Beam loss control in SIS100 is relevant for the design of collimators and for maintaining vacuum quality. We present the status of the studies of beam degradation, due to space charge and magnet imperfections during the accumulation at injection energy. The impact of magnet misalignment on resonances and beam trapping/scattering effects is discussed. |
|||
TH5PFP026 | Effects of Coherent Resonances for the J-PARC Main Ring at the Moderate Beam Power | space-charge, coupling, emittance, alignment | 3251 |
|
|||
Crossing different types of resonances is unavoidable for the high beam power operation of the JPARC Main Ring. The ‘lattice’ resonances are cause by the realistic machine imperfection including the field and alignment errors. In addition the ‘space charge’ resonances will lead to the emittance growth. The mechanism of the emittance dilution for the realistic machine imperfection in combination with the space charge effects should be studied in the self-consistent manner. In frame of this report we analyze different coherent modes of the space charge dominated beam at the injection energy for the JPARC Main Ring for some basic operation scenario of the machine. This analysis allows to identify the most dangerous resonances and to understand the effect of the emittance dilution remaining after the resonance correction. The study has been performed by using the PTC{}ORBIT code. |
|||
TH5PFP040 | Optical Matching of EMMA Cell Parameters Using Field Map Sets | simulation, lattice, closed-orbit, acceleration | 3287 |
|
|||
The Non Scaling FFAG EMMA lattice allows a important displacement of the magnets in the radial direction. From this peculiarity, interesting studies of beam dynamics can be performed comparing simulated and experimental results. Being able to study a specific resonance, choosing a certain set of parameters for the lattice is really challenging. Simulations have been done integrating particle trajectories with Zgoubi through Magnetic Field Map created with OPERA. From a chosen tune evolution, one can find the corresponding magnets' configuration required by interpolating between a various sets of Field Map. Relative position and strength of the magnets are degrees of freedom. However, summing field maps requires a special care since the real magnetic field created by two magnets is not obviously linearly dependent on each single magnet. For this reason, frequently used hard edge and fringe field models may not be accurate enough. This linearity of the magnetic field has been studied directly through OPERA finite element method solutions and further on with Zgoubi tracking results. |
|||
TH5PFP049 | Acceleration of Symplectic Integrator with Graphical Processing Units | lattice, dynamic-aperture, multipole, target | 3312 |
|
|||
The study of nonlinear effects in storage rings requires massively parallel particle tracking over a range of initial conditions. Stream processing architectures trade cache size for greatly increased floating point throughput in the case of regular memory access patterns. The symplectic integrator of Tracy-II* has been implemented in CUDA** on the nVidia stream processor and used to calculate dynamic apertures and frequency maps for the Diamond low-alpha lattice. To facilitate integration with existing workflows the the lattice description of Accelerator Toolbox*** is re-used. The new code is demonstrated to achieve a two orders of magnitude increase in tracking speed over a single CPU core and benchmarks of the performance and accuracy against other codes are presented. *J. Bengtsson, Tracy-2 User's Manual, Feb 1997. |
|||
TH5PFP051 | Numerical Algorithms for Dispersive, Active, and Nonlinear Media with Applications to the PASER | acceleration, wakefield, laser, simulation | 3318 |
|
|||
Funding: Work supported by the US Department of Energy. The PASER is one of the first advanced accelerator modeling applications that requires a more sophisticated treatment of dielectric and paramagnetic media properties than simply assuming a constant permittivity or permeability. So far the PASER medium has been described by a linear, frequency-dependent, single-frequency, scalar dielectric function. We have been developing algorithms to model the high frequency response of dispersive, active, and nonlinear media with an emphasis on areas most useful for PASER simulations. The work described also has applications for modeling of other electromagnetic problems involving realistic dielectric and magnetic media. Results to be reported include treatment of multiple Lorentz resonances based on auxiliary differential equation, Fourier, and hybrid approaches, and Kerr, Brillouin, and Raman optical nonlinearities. |
|||
TH5PFP080 | Results from a Test Fixture for Button BPM Trapped Mode Measurements | impedance, simulation, coupling, pick-up | 3389 |
|
|||
Three-dimensional electromagnetic simulations have suggested a variety of measures to mitigate the problem of button BPM trapped mode heating. A test fixture, using a combination of commercial-off-the-shelf and custom machined components, was assembled to validate the simulations. We present details of the fixture design, measurement results, and a comparison of the results with the simulations. |
|||
TH5PFP081 | Comparative Study of Button BPM Trapped Mode Heating | storage-ring, collider, impedance, instrumentation | 3392 |
|
|||
The outer circumference of a BPM button and the inner circumference of the button housing comprise a transmission line. This transmission line typically presents an impedance of a few tens of ohms to the beam, and couples very weakly to the 50 Ω coaxial transmission line that comprises the signal path out of the button. The modes which are consequently excited and trapped often have quality factors of several hundred, permitting resonant excitation by the beam. The combination of short bunches and high currents found in modern light sources and colliders can result in the deposition of tens of watts of power in the buttons. The resulting thermal distortion is potentially problematic for maintaining high precision beam position stability, and in the extreme case can result in mechanical damage. We present here a simple algorithm that uses the input parameters of beam current, bunch length, button diameter, beampipe aperture, and fill pattern to calculate a figure-of-merit for button heating. Data for many of the world’s light sources and colliders is compiled in a table. |
|||
TH5PFP086 | About Non Resonant Perturbation Field Measurement in Standing Wave Cavities | cavity, simulation, brilliance, RF-structure | 3407 |
|
|||
We discuss the use of non resonant bead pull technique for measuring fields in standing wave accelerating structures. From the Steele perturbation theory, one can derive the relation between the magnitude and phase of the field in the cavity and the complex reflection coefficient. The effect of the bead size, the calibration of the bead and the comparison with the more common resonant techniques are addressed. As an example, we discuss the measurement on a X-band bi-periodic cavity proposed for linearizing emittance at the Frascati photo-injector SPARC. |
|||
TH5RFP001 | Development of Metamaterials for Cherenkov Radiation Based Particle Detectors | wakefield, radiation, simulation, proton | 3432 |
|
|||
Funding: DOE Metamaterials (MTMs) are periodic artificially constructed electromagnetic structures. The periodicity of the MTM is much smaller than the wavelength of the radiation being transported. With this condition satisfied, MTMs can be assigned an effective permittivity and permeability. Areas of possible application of MTMs in accelerator science are Cherenkov detectors and wakefield devices. MTMs can be designed to be anisotropic and dispersive. The combination of engineered anisotropy and dispersion can produce a Cherenkov radiation spectrum with a different dependence on particle energy than conventional materials. This can be a basis for novel non-invasive beam energy measurements. We report on progress in the development of these media for a proof-of-principle demonstration of a metamaterial-based beam diagnostic. |
|||
TH5RFP011 | BPM Button Optimization to Minimize Distortion due to Trapped Mode Heating | impedance, pick-up, simulation, synchrotron | 3462 |
|
|||
The thermal distortion resulting from BPM button trapped mode heating is potentially problematic for achieving the high precision beam position measurement needed to provide the sub-micron beam position stability required by light source users. We present a button design that has been thermo-mechanically optimized via material selection and component geometry to minimize this thermal distortion. Detailed electromagnetic analysis of the button geometry is presented elsewhere in these proceedings. |
|||
TH5RFP087 | Linear Collider Final Doublet Considerations: ATF2 Vibration Measurements | ground-motion, site, damping, coupling | 3654 |
|
|||
Funding: Work supported by the Agence Nationale de la Recherche of the French Ministry of Research (Programme Blanc, Project ATF2-IN2P3-KEK, contract ANR-06-BLAN-0027). Future linear collider projects like ILC and CLIC will have beam sizes of a few nm. Vibration sources like ground motion can hamper the beam collisions. Relative jitter tolerance between the final focus magnets and the Interaction point (IP) is a fraction of the beam size. The ATF2 project proposes a test facility with a projected beam of 37nm. To measure the beam size with only 2% of error, vertical relative jitter tolerance (above 0.1Hz) between the final doublet magnets (FD) and the IP (with a Shintake beam Size Monitor: BSM) is of the order of 7nm while ground motion is of about 150nm. Thanks to determined adequate instrumentations, investigations were done to design supports for FD. Since ground motion measurements showed that this one is coherent up to 4m, more than the distance between FD and BSM, we chose a stiff support for FD fixed to the ground on its entire surface. Thus, FD and BSM should move in a coherent way. Vibration measurements show that relative motion between FD and BSM is only of 4.8nm and that flowing water in FD does not add any significant jitter. The FD support has been consequently validated on site at ATF2 to be within the vibration specifications. |
|||
TH6PFP010 | Precision Closed Orbit Correction in a Fast Ramping Stretcher Ring | electron, closed-orbit, acceleration, controls | 3714 |
|
|||
Acceleration of polarized electrons in a fast ramping circular accelerator poses challenging demands on the control and stabilization/correction of the closed orbit and the vertical betatron tune, in particular on the fast energy ramp. In order to successfully compensate depolarizing resonances at a ramping speed of up to 7.5 GeV/sec (dB/dt = 2 T/sec), at ELSA the closed orbit is stabilized with high precision using a system of Beam Position Monitors and steerer magnets distributed along the ring. During acceleration, the beam positions are read out from the BPMs at a rate of 1 kHz and energy-dependent orbit corrections are applied accordingly by means of offline feed-forward techniques. The system is thus sensitive to dynamic effects and an orbit stabilization of 100 microns rms is achieved routinely. At the same time, the betatron tunes are stabilized to 0.01 by time-resolved tune measurement and appropriate manipulations of the machine optics. This presentation will cover the concepts and implementation of techniques for orbit stabilization required for the acceleration of a polarized electron beam in the fast ramping stretcher ring ELSA. |
|||
TH6PFP017 | Simulations on the AGS Horizontal Tune Jump Mechanism | emittance, lattice, polarization, simulation | 3735 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A new horizontal tune jump mechanism has been proposed to overcome the horizontal intrinsic resonances and preserve the polarization of the proton beam in the AGS during the energy ramp. An adiabatic change of the AGS lattice is needed to avoid the emittance growth in both horizontal and vertical motion, as the emittance growth can deteriorate the polarization of the proton beam. Two critical questions are necessary to be answered: how fast can the lattice be changed and how much emittance growth can be tolerated from both optics and polarization points of view? Preliminary simulations, using a realistic AGS lattice and acceleration rate, have been carried out to give a first glance of this mechanism. Several different conditions are presented in this paper. |
|||
TH6PFP022 | An FFAG Transport Line for the PAMELA Project | emittance, lattice, closed-orbit, focusing | 3741 |
|
|||
The PAMELA project to design an accelerator for hadron therapy using non-scaling Fixed Field Alternating Gradient (NS-FFAG) magnets requires a transport line and gantry to take the beam to the patient. The NS-FFAG principle offers the possibility of a gantry much smaller, lighter and cheaper than conventional designs, with the added ability to accept a wide range of fast changing energies. This paper will build on previous work to investigate a transport line which could be used for the PAMELA project. The design is presented along with a study and optimisation of its acceptance. |
|||
TH6PFP028 | Model Independent Analysis with Coupled Beam Motion | coupling, dipole, betatron, simulation | 3759 |
|
|||
This paper describes the results of measurements compared with the analysis of errors for a method of determining accelerator Twiss and coupling parameters from the singular value decomposition of beam position monitor data, taken on a turn-by-turn basis for a storage ring in fully coupled transverse beam coordinates. Using the transversely coupled-coordinate formalism described by Billing et al*, the measurement technique expands on the work of Wang et al**, which describes the SVD of the same data under the assumptions of no transverse coupling of the beam parameters. This particular method of data analysis requires a set of BPM measurements, taken when the beam is resonantly excited in each of its two dipole, betatron normal-modes of oscillation *M. Billing, et al, to be published in Phys. Rev. S T Accel Beams |
|||
TH6PFP043 | Orbit, Optics and Chromaticity Correction for PS2 Negative Momentum Compaction Lattices | sextupole, dipole, quadrupole, optics | 3802 |
|
|||
The effect of magnet misalignments in the beam orbit and linear optics functions are reviewed and correction schemes are applied to the negative momentum compaction lattices of PS2. Chromaticity correction schemes are also proposed and tested with respect to off-momentum optics properties. The impact of the correction schemes in the dynamic aperture of the different lattices is finally evaluated. |
|||
TH6PFP044 | Linear Optics Design of Negative Momentum Compaction Lattices for PS2 | optics, injection, quadrupole, dipole | 3805 |
|
|||
In view of the CERN Proton Synchrotron proposed replacement with a new ring (PS2), a detailed optics design as been undertaken following the evaluation of several lattice options. The basic arc module consists of cells providing negative momentum compaction. The straight section is formed with a combination of FODO and quadrupole triplet cells, to accommodate the injection and extraction systems, in particular the H- injection elements. The arc is matched to the straight section with a dispersion suppressor and matching module. Different lattices are compared with respect to their linear optics functions, tuning flexibility and geometrical acceptance properties. |
|||
TH6PFP056 | Beam Dynamics Studies for a Neutrino Factory Decay Ring | factory, dynamic-aperture, optics, sextupole | 3832 |
|
|||
The Race Track design for the Decay Ring of a Neutrino Factory is studied with the MAD-X code. Optimisation of the working point, study of resonances and of dynamic aperture for several off-momentum cases are presented. An introduction to the problem of beam losses is given. |
|||
TH6PFP067 | Linear Algebraic Method for Non-Linear Map Analysis | storage-ring, non-linear-dynamics, sextupole, linear-dynamics | 3862 |
|
|||
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a linear matrix analysis method in linear algebra. Using the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of analysis of eigenvectors in Jordan spaces which is widely used in conventional linear algebra. |
|||
TH6PFP075 | Linear and Non-Linear Optics Measurements at SOLEIL | undulator, simulation, storage-ring, optics | 3877 |
|
|||
The successful correction of non-linear resonances in DIAMOND using the BPM turn-by-turn data has motivated testing this approach in SOLEIL in collaboration with CERN. We report on the first experiences towards the correction of non-linear resonances in SOLEIL. |
|||
TH6PFP079 | Study of Integer Betatron Resonance Crossing in Scaling FFAG Accelerator | betatron, acceleration, simulation, closed-orbit | 3889 |
|
|||
Crossing of integer resonance in scaling FFAG accelerator has been studied experimentally with the injector of 150MeV FFAG complex at Kyoto University Research Reactor Institute (KURRI). The results were analyzed based on harmonic oscillator model and compared with beam tracking simulations. |
|||
TH6PFP080 | Symplectic Expression for Chromaticity | betatron, optics, coupling, synchrotron | 3892 |
|
|||
The value calculated by using general-purpose computer code SAD for the accelerator is sometimes different from actual measurements. This is because many kinds of factor cause error, like machine error, so we can’t include such error exactly in SAD. Therefore, on the contrary, we consider the model which includes error by using measurement data and derive Hamiltonian from it. |
|||
TH6PFP088 | Integrable Accelerator Lattices with Periodic and Exponential Invariants | lattice, SRF, betatron, damping | 3910 |
|
|||
Funding: SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. The paper presents a new variety of one-dimensional nonlinear integrable accelerator lattices with periodic and exponential invariants in coordinates and momenta. Extension to two-dimensional transverse motion, based on a recently published approach*, is discussed. *V. Danilov, “Practical Solutions for Nonlinear Accelerator Lattice with Stable Nearly Regular Motion”, Phys. Rev. ST AB 11, 114001 (2008) |
|||
TH6PFP089 | Beam Transverse Issues at the SNS Linac | quadrupole, beam-losses, linac, multipole | 3913 |
|
|||
Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. The Spallation Neutron Source (SNS) linac system is designed to deliver 1 GeV pulsed H- beams up to 1.56 MW for neutron production. As beam power was increased from 10 kW to 660 kW in less than three years, beam loss in the accelerator systems particularly in the superconducting linac (SCL), became more significant. In the previous studies, unexpected beam loss in the SCL was mainly attributed to longitudinal problems. However, our most recent simulations have focused on beam transverse effects. These include multipole components from magnet imperfections and dipole corrector windings of the linac quadrupoles. The effect of these multipoles coupled with other errors will be discussed. |
|||
TH6PFP093 | Nonlinear Beam Dynamics with Strong Damping and Space Charge in the CLIC Damping Ring | damping, space-charge, simulation, emittance | 3925 |
|
|||
The beam is injected into the CLIC damping ring with the relatively large emittance and energy spread and then is damped to the extremely low phase volume. During the damping process the betatron frequency of each particle changes due to the space charge tune shift and nonlinear detuning produced by the chromatic sextupoles, wiggler nonlinear field components and by the space charge force. During the damping, the particle cross resonances, which can trap some fraction of the beam, cause the loss of intensity, the beam blow up and degrade the beam quality. In this paper we study the evolution of the beam distribution in time during the damping. |
|||
TH6PFP096 | Analytical Calculation of the Smear for Long-Range Beam-Beam Interactions | emittance, simulation, betatron, luminosity | 3934 |
|
|||
The Lie-algebraic method is used to develop generalized Courant-Snyder invariant in the presence of an arbitrary number of beam-beam collisions, head-on or long-range, in a storage ring collider. The invariant is obtained by concatenating nonlinear beam-beam maps in the horizontal plane and to first order in the beam-beam parameter. Tracking evidence is presented to illustrate that with LHC parameters the invariant is indeed preserved and can be used to predict the smear of horizontal emittance observed in tracking simulations. We discuss the limits of applicability of this model for realistic LHC collision schemes. |
|||
TH6PFP098 | Studies of the nur=3/2 Resonance in the TRIUMF Cyclotron | cyclotron, TRIUMF, simulation, extraction | 3940 |
|
|||
Funding: TRIUMF receives funding via a contribution agreement through the National Research Council of Canada. The TRIUMF cyclotron is 6-fold symmetric, but has a 3rd harmonic magnetic field gradient error. As well, there is a 3rd harmonic component generated from the beating of the primary harmonics with the 9th harmonic. Both can contribute and drive the nur=3/2 resonance. As a consequence, the radial phase space ellipses become stretched and mismatched; this introduces a radial modulation of beam density and thereby causes a sensitivity of the extracted current to, for example, small changes in rf voltage. The cyclotron has "harmonic" correction coils, but these were designed to generate a first harmonic, not a third harmonic. Their 6-fold symmetric layout can only generate a 3rd harmonic at one particular phase and so can only partially compensate for this resonance. For a complete compensation, the 6 pairs of this harmonic coil would have to shift in azimuth by ~30degr. This paper describes the simulations performed with COMA to study the effect of this resonance. Initial measurement results are also presented. |
|||
TH6REP037 | Radiation of a Charge Crossing a Left-Handed Medium Boundary and Prospects for its Application to Beam Diagnostics | vacuum, radiation, diagnostics, scattering | 4030 |
|
|||
Funding: Physical Faculty of St.Petersburg State University (14.10.08); SBIR DOE (DE-FG02-08ER85031) Radiation of a charge crossing the boundary between vacuum and left-handed medium is analyzed. The medium is characterized by permittivity and permeability with frequency dispersion of “plasmatic” type. Such properties can be realized in some modern metamaterials with a relatively simple structure. Both the case of unbounded medium and the case of circular waveguide are considered. Analytical expressions for field components are obtained and algorithm of their computation is developed. The main attention is given to the analysis of radiation in vacuum region. In particular, it is shown that two types of radiation can be generated in this region. One of them is an ordinary transition radiation having relatively large magnitude. Another type of radiation can be named the “Cherenkov-transition” radiation. Conditions of generating this type of radiation are obtained. This effect and some another properties of radiation can be used for diagnostics of beams. For example, the detector with two energy thresholds can be designed. |
|||
TH6REP056 | Study on Depolarization Time of Resonant Depolarization Experiment | electron, storage-ring, polarization, synchrotron | 4081 |
|
|||
Radial alternating magnetic field is generated to act on polarized beam to give rise to resonant depolarization and calibrate the energy of electron by feeding power to a pair of vertical installed striplines in HLS. In the paper, the relationship between depolarization time and power fed into the striplines is investigated, and spin frequency spread is considered too. As a result, a depolarization time of 60s is acquired with an amplifier power of 15W fed into the striplines. |
|||
FR1GRC04 | AGS Polarized Proton Operation in Run 2009 | polarization, injection, emittance, betatron | 4251 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. After installation of two partial snakes in the Brookhaven Alternating Gradient Synchrotron (AGS), a polarized proton beam with 1.5*1011 intensity and 65% polarization has been achieved. There are residual polarization losses due to horizontal resonances over the whole energy ramp and some polarization loss due to vertical intrinsic resonances. Many efforts have been put in to reduce the emittances coming into the AGS and to consequently reduce polarization loss. This paper presents the accelerator setup and preliminary results from run-9 operations. |
|||
|
|||
FR2RAC02 | Measurement and Analysis of SPS Kicker Magnet Heating and Outgassing with Different Bunch Spacing | kicker, impedance, proton, extraction | 4264 |
|
|||
Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, over several hours, even above the Curie temperature of the ferrite. At present the nominal bunch spacing in the SPS is 25 ns, however for an early stage of LHC operation it is preferable to have 50 ns bunch spacing. Machine Development (MD) studies have been carried out with an inter-bunch spacing of 25 ns, 50 ns or 75 ns. For some of the SPS kicker magnets the 75 ns bunch spacing resulted in considerable beam induced heating. In addition the MDs showed that 50 ns bunch spacing could result in a very rapid pressure rise in the kicker magnet and thus cause an interlock. This paper discusses the MD observations of the SPS kickers and analyses the available data to provide explanations for the phenomena: possible remedies are also discussed. |
|||
|
|||
FR5PFP044 | Studies of Space Charge Loss Mechanisms Associated with Half Integer Resonance on the ISIS RCS | simulation, space-charge, emittance, diagnostics | 4408 |
|
|||
ISIS is the spallation neutron source at the Rutherford Appleton Laboratory in the UK. Operation centres on a 50 Hz proton synchrotron, which accelerates ~3·1013 ppp from 70 to 800 MeV, corresponding to beam powers of 0.2 MW. Beam loss imposes limits on operational intensity, and a main contributing mechanism is the action of half integer resonance under high space charge. The same loss mechanism is also a potential problem in ISIS upgrade scenarios involving either higher energy injection into the existing ring, or the addition of a new 3 GeV, high intensity RCS. Progress on particle in cell simulation studies investigating the effects of the driven coherent envelope motion, the associated parametric halo, along with implications of momentum spread, dispersion and longitudinal motion, is reported. Where possible, comparisons are made with relevant theoretical models. Closely related benchmarking work, experimental studies and plans are also summarised. |
|||
FR5PFP050 | An Analytical Characterization of Initially Non-Homogeneous Matched Beams at Equilibrium | simulation, emittance, focusing, background | 4421 |
|
|||
Non-homogeneity is a characteristic naturally present in non-neutral beams. Recently, a set of works has been developed by us for the case of beams initially homogeneous, making possible that relevant macroscopic quantities such as the RMS radius and emittance could be determined at equilibrium as functions of characteristic parameters of beam phase-space and of initial conditions. The present work intends to investigate the influences of the initial inhomogeneity in the beam route to equilibrium. Through the same methodology introduced in the studies for the homogeneous beams, both emittance and beam envelope have been obtained as functions of the magnitude of the inhomogeneity and some additional parameters associated with geometry of beam phase-space. The results obtained with this investigation have proven to be useful not only to better understand the effects of inhomogeneity over beam dynamics but also to provide physical background to the investigations previously carried out for homogeneous beams. |
|||
FR5PFP055 | Anisotropic Kinetic and Dynamics Processes in Equipartitioned Beams | space-charge, emittance, coupling, focusing | 4431 |
|
|||
The question is whether an anisotropic system of collisionless particles coupled by long-range space-charge forces will equipartition and, if so, how. Results show that collective effects tend to cause an initial beam with strongly nonuniform density to relax, rapidly, to a state that is equlibrium-like. In order to understand the initial dynamical behavior of an anisotropic beams, in particular, to study possible mechanisms of equipartition connected with phase space we have to know how we can compute the variables (volume, area of surface, and area projected) that characterize the anisotropic beam in phase space. The purpose of this paper is to propose one definiton of the anisotropic equipartition. In the state of anisotropic equipartition, the temperature is stationary, the entropy grows in the cascade form, there is a coupling of transversal emittance, the beam develops an elliptical shape with a increase in its size along one direction and there is halo formation along one direction preferential. |
|||
FR5PFP059 | Resonance Phenomena over a Broad Range of Beam Intensities in an Electron Storage Ring | space-charge, emittance, quadrupole, electron | 4443 |
|
|||
Funding: This work is funded by the US Dept. of Energy Offices of High Energy Physics and High Energy Density Physics, and by the US Dept. of Defense Office of Naval Research and Joint Technology Office The University of Maryland Electron Ring (UMER) can operate over a broader range of beam intensities than other circular machines. Naturally, transverse and longitudinal space charge effects limit the ability to store beams. In UMER, the resonance properties of the machine in the two regimes of operation, emittance- and space charge-dominated transport, differ significantly. We report on studies of linear betatron resonances in UMER from 0.6 mA to 80 mA beam current, corresponding to theoretical space charge incoherent tune shifts well over the Lasslet limit. The observations are related to existing theories as well as to computer simulations. We also describe the instrumentation and techniques used for tune measurements. |
|||
FR5PFP085 | Benchmarking Multipacting Simulations in VORPAL | electron, simulation, cavity, plasma | 4505 |
|
|||
Funding: Department of Energy SBIR grant DE-FG02-05ER84172 We will present the results of benchmarking simulations run to test the ability of VORPAL to model multipacting processes in Superconducting Radio Frequency structures. VORPAL is an electromagnetic (FDTD) particle-in-cell simulation code originally developed for applications in plasma and beam physics. The addition of conformal boundaries and algorithms for secondary electron emission allow VORPAL to be applied to multipacting processes. We start with simulations of multipacting between parallel plates where there are well understood theoretical predictions for the frequency bands where multipacting is expected to occur. We reproduce the predicted multipacting bands and demonstrate departures from the theoretical predictions when a more sophisticated model of secondary emission is used. Simulations of existing cavity structures developed at Jefferson National Laboratories will also be presented where we compare results from VORPAL to experimental data. |
|||
FR5PFP089 | Modeling Microwave Transmission in Electron Clouds | electron, simulation, plasma, dipole | 4512 |
|
|||
Funding: This work funded by the Department of Energy under Small Business Innovation Research Contract No. DE-FG02-08ER85042. Microwave transmission in accelerator beam pipes is providing a unique method for determining electron cloud characteristics, such as density, plasma temperature, and potentially the efficacy of electron cloud mitigation techniques. Physically-based numerical modeling is currently providing a way to interpret the experimental data, and understand the plasma-induced effects on rf signals. We report here recent applications of numerical simulation of microwave transmission in the presence of electron clouds. We examine the differences in phase shift induced by TE11 and TM01 modes in circular cross section beam pipes for uniform density electron clouds. We also detail numerical simulation of the cyclotron resonance and examine how the width of the resonance changes with applied dipole magnetic fields strength and cloud temperature. |
|||
FR5PFP094 | Enhanced Method for Cavity Impedance Calculations | impedance, cavity, wakefield, HOM | 4523 |
|
|||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. With the proposal of medium to high average current accelerator facilities the demand for cavities with extremely low HOM impedances is increasing. Modern numerical tools are still under development to more thoroughly predict impedances that need to take into account complex absorbing boundaries and lossy materials. With the usually large problem size it is preferable to utilize massive parallel computing when applicable and available. Apart from such computational issues, we have developed methods using available computer resources to enhance the information that can be extracted from a cavities’ wake potential computed in time domain. In particular this is helpful for a careful assessment of the extracted RF power and the mitigation of potential beam breakup or emittance diluting effects, a figure of merit for the cavity performance. The methods are described as well as examples of their implementation. |
|||
FR5RFP001 | Microwave Active Media Studies for PASER | laser, cavity, electron, coupling | 4535 |
|
|||
Funding: DOE Particle Acceleration by Stimulated Emission of Radiation (PASER) is method of particle acceleration in which a beam gains energy from an active medium through stimulated emission. To obtain the required sitmulated emission for the PASER effect the particle beam intensity is modulated at the frequency corresponding to the energy difference between the levels in which population inversion is achieved in the active medium. We propose to use solid-state active medium based on the Zeeman effect (triplet systems) for the PASER. Modulation of the beam at the frequency of the transition to obtain stimulated emission can be produced by means of a deflecting cavity. A transverse "beamlet" pattern will be produced on the AWA photocathode gun by using a laser mask. The transverse beam distribution will be transformed into a longitudinal beam modulation as the beam passes through the deflecting cavity. In this paper we report on the development of active media and the first RF bench test. |
|||
FR5RFP012 | Epicyclic Helical Channels for Parametric Resonance Ionization Cooling | solenoid, simulation, beam-transport, luminosity | 4554 |
|
|||
Funding: Work supported in part in part by DOE contract DE-AC02-07CH11359 and DOE STTR Grant DE-FG02-05ER86253 In order to achieve cooling of muons in addition to 6D helical cooling channel (HCC) [1], we develop a technique based on a parametric resonance. The use of parametric resonances requires alternating dispersion, minimized at locations of thin absorbers, but maximized in between in order to compensate for chromatic aberrations [2]. These solutions can be combined in an Epicyclic Helical Cooling Channel (EHCC) that meets requirements of alternating dispersion of beam periodic orbit with best conditions for maintenance of stable beam transport in a continuous solenoid-type field [3]. We discuss here basic features and new simulation results for EHCC. |
|||
FR5RFP014 | Testing of Laser-Driven Resonant Accelerating-Structures Possessing Sub-Wavelength Periodic Features | laser, simulation, alignment, controls | 4559 |
|
|||
The Micro-Accelerator Platform, a laser-driven accelerating device measuring less than a millimeter in each dimension, has a variety of applications in industry and medicine. The structure consists of two parallel slabs, with each possessing reflective surfaces and with one having periodic slots which allows transversely incident laser light to enter the gap between the two planes. The resonance of the electric field created in the gap can be measured indirectly through the spectral response of the device. Using a combination of an interferometer and a fiber coupled spectrometer, prototype structures are aligned and measured. With the aid of a nanometer-accuracy positioning device, the bottom slab (a mirror) is aligned with the top slotted-structure. The interferometer and a low power laser are used to position the slabs. A 800nm Titanium-Sapphire oscillator with a bandwidth of greater than 100nm is used for the spectral measurements. The spectra of both transmitted and reflected beams have been measured for a number of structures and are compared to simulation results. Various improvements to the initial measurement system as well as alternative future approaches are discussed. |
|||
FR5RFP021 | Acceleration of an Electron Bunch with Narrow Energy Spread in a PWFA | plasma, wakefield, electron, dipole | 4576 |
|
|||
Funding: Work supported by US Department of Energy. One of the challenges for plasma wakefield accelerators (PWFAs) is to accelerate a trailing bunch with a narrow energy spread. The real challenge is to produce a bunch train with a least one drive bunch and one trailing bunch. We have demonstrated experimentally at the BNL-ATF a mask technique that can produce trains of bunches with variable spacing in the sub-picosecond range*. This 60 MeV train with one to five drive bunches and a trailing bunch propagates in a 1 to 2 cm long plasma capillary discharge with a variable plasma density. When the plasma density is tuned such that the plasma wavelength is equal to the drive bunches spacing the plasma wakefield is resonantly excited. The distance between the last drive bunch and the trailing bunch is one and a half time that between the drive bunches, putting the trailing bunch in the accelerating phase of the wakefield. The resonance is characterized by a maximum energy loss by all the drive bunches and maximum energy gain by the trailing bunch. Experimental results will be presented. *P. Muggli et al., Phys. Rev. Lett. {10}1, 054801, 2008 |
|||
FR5RFP047 | Analysis of the Transverse SPS Beam Coupling Impedance with Short and Long Bunches | impedance, simulation, kicker, pick-up | 4640 |
|
|||
The upgrade of the CERN Large Hadron Collider (LHC) would require a four- to fivefold increase of the single bunch intensity presently obtained in the Super Proton Synchrotron (SPS). Operating at such high single bunch intensities requires a detailed knowledge of the sources of SPS beam coupling impedance, so that longitudinal and transverse impedance reduction campaigns can be planned and performed effectively if needed. In this paper, the transverse impedance of the SPS is studied by injecting a single long bunch into the SPS, and observing its decay without RF. This particular setup enhances the resolution of the frequency analysis of the longitudinal and transverse bunch signals acquired with strip line couplers connected to a fast data acquisition. It also gives access to the frequency content of the transverse impedance. Results from measurements with short and long bunches in the SPS performed in 2008 are compared with simulations and theoretical predictions. |
|||
FR5RFP049 | Coupling Impedance of the CERN SPS Beam Position Monitors | impedance, simulation, coupling, cavity | 4646 |
|
|||
A detailed knowledge of the beam coupling impedance of the CERN Super Proton Synchrotron (SPS) is required in order to operate this machine with a higher intensity for the foreseen Large Hadron Collider (LHC) luminosity upgrade. A large number of Beam Position Monitors (BPM) is currently installed in the SPS, and this is why their contribution to the SPS impedance has to be assessed. This paper focuses on electromagnetic simulations and bench measurements of the longitudinal and transverse impedance generated by the horizontal and vertical BPMs installed in the SPS machine. |
|||
FR5REP078 | A Fourth Order Resonance of a High Intensity Linac | linac, emittance, space-charge, simulation | 4959 |
|
|||
The 4ν=1 resonance of a linac is demonstrated when the depressed tune is around 90 deg. It is observed that this fourth order resonance is dominating over the better known envelope instability and practically replacing it. Simulation study shows a clear emittance growth by this resonance and its stopband. One of the authors [DJ] made a proposal to GSI to measure the stopband of this resonance. The experiment was conducted successfully and the experiment data will be presented separately in the conference. |
|||
FR5REP100 | Coupling Resonance Qx-Qy=0 and Its Correction in Axial Injection Channel of the Cyclotron | emittance, cyclotron, ion, injection | 5014 |
|
|||
In axial injection channels of FLNR JINR cyclotrons the axial symmetric ion beam is formed just after the analyzing bending magnet. This gives an opportunity to use for beam focusing at vertical part of the channel solenoidal magnetic lenses only. During the motion of intense axial symmetric beam in the longitudinal magnetic field of solenoids and cyclotron the transverse tunes Qx, Qy coincide. In this case the small disturbance of beam axial symmetry leads to excitation of coupling resonance Qx-Qy=0 due to beam self-fields. The influence of the resonance results in significant asymmetry of the transverse beam emittances. The magnitude of this asymmetry is evaluated within the framework of moments method and is in a good agreement with one obtained in the macro-particles simulation. The correction of resonance by means of the normal quadrupole lens is proposed. |
|||
FR5REP114 | FFAGs and Cyclotrons with Reverse Bends | cyclotron, lattice, focusing, TRIUMF | 5044 |
|
|||
This paper describes tracking studies of FFAGs and radial-sector cyclotrons with reverse bends using the cyclotron equilibrium orbit code CYCLOPS. The results for FFAGs confirm those obtained with lumped-element codes, and suggest that cyclotron codes will prove to be important tools for evaluating the measured fields of FFAG magnets. The results for radial-sector cyclotrons show that the use of negative valley fields would allow axial focusing to be maintained, and hence allow intense cw beams to be accelerated, to energies of the order of 10 GeV. |