A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

linear-collider

Paper Title Other Keywords Page
MO6PFP056 Electromagnetic SCRF Cavity Tuner cavity, resonance, radio-frequency, collider 262
 
  • V.S. Kashikhin, E. Borissov, G.W. Foster, T.N. Khabiboulline, A. Makulski, Y.M. Pischalnikov
    Fermilab, Batavia
 
 

Funding: Department of Energy, U.S.A.


A novel prototype of SCRF cavity tuner is being designed and tested at Fermilab. This is a superconducting C-type iron dominated magnet having a 10 mm gap, axial symmetry, and a 1 Tesla field. Inside the gap is mounted a superconducting coil capable of moving ± 1 mm and producing a longitudinal force up to ± 1.5 kN. The static force applied to the RF cavity flanges provides a long- term cavity geometry tuning to a nominal frequency. The same coil powered by a fast AC current pulse delivers mechanical perturbation for fast cavity tuning. This fast mechanical perturbation could be used to compensate a dynamic RF cavity detuning caused by cavity Lorentz forces and microphonics. A special configuration of magnet system was designed and tested.

 
MO6PFP081 Magnetic Field Measurement System for Superconducting Undulators undulator, laser, controls, positron 321
 
  • S.H. Kim, C.L. Doose, Y. Ivanyushenkov
    ANL, Argonne
 
 

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


The baseline configuration of the proposed International Linear Collider includes superconducting helical undulators as a scheme to produce positrons. This paper presents a conceptual design of the magnetic field measurement system for helical undulators with the undulator axis in a horizontal direction at liquid helium temperature. The system consists of a cryomodule and a linear stage unit with a travel length of approximately 3.5 m. The linear stage unit provides the motion control for the Hall probe housing, which is connected to a small-diameter carbon fiber rod inside bellows-flange connections. Stainless steel bellows are at the same vacuum pressure as the cold mass in the cryomodule. A linear encoder is used for motion control of the stage, but precise position measurement of the Hall probe relies on the laser interferometer system.

 
MO6RFP007 Design of the CLIC Quadrupole Vacuum Chambers vacuum, quadrupole, controls, linac 363
 
  • C. Garion, H. Kos
    CERN, Geneva
 
 

The Compact LInear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thin-walled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests have been carried out on the prototypes. The test set-up as well as the performance of the pumping system are presented and compared with predictions.

 
TU1GRI01 Road to a Plasma Wakefield Accelerator Based Linear Collider collider, plasma, wakefield 646
 
  • M.J. Hogan, I. Blumenfeld, N.A. Kirby, S. Pei, T.O. Raubenheimer, A. Seryi, P. Tenenbaum
    SLAC, Menlo Park, California
  • C. Huang, C. Joshi, W. Lu, W.B. Mori
    UCLA, Los Angeles, California
  • T.C. Katsouleas
    Duke University, Durham, North Carolina
  • P. Muggli
    USC, Los Angeles, California
 
 

Funding: Work supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515.


Recent progress in generating gradients in the 10's of GV/m range with beam driven plasmas has renewed interest in developing a linear collider based on this technology. This talk will explore possible configurations of such a machine, discuss the key demonstrations and the facilities needed to advance this effort and highlight possible alternative uses of this technology.

 

slides icon

Slides

 
TU3RAI03 Progress on Improving SC Cavity Performance for ILC cavity, niobium, SRF, linac 704
 
  • R.L. Geng
    JLAB, Newport News, Virginia
 
 

A major portion of the ILC R&D effort is focused on increasing the sustainable gradients in the baseline TESLA-shape SC cavities. This is a world-wide effort with major contributions from DESY (in parallel with their XFEL program), JLAB, FNAL and KEK. During the past year, the work in the US and Japan has ramped up considerably, and PAC09 is an opportune time to review the contributions from the groups in these regions, as well as at DESY.

 

slides icon

Slides

 
TU5PFP072 R&D for the Sponge Cleaning of Superconducting RF Cavity cavity, ion, niobium, superconducting-RF 990
 
  • T. Saeki, Y. Funahashi, H. Hayano, S. Kato, M. Nishiwaki, M. Sawabe., K. Ueno, K. Watanabe
    KEK, Ibaraki
  • W.A. Clemens, R.L. Geng, R. Manus
    JLAB, Newport News, Virginia
 
 

The Electro-polishing process is the best candidate of final surface treatment for the production of ILC cavities. Nevertheless, the broad distribution of the gradient caused by field emitters in cavities is sitll a serious problem for the EP process. Ethanole- and degreaser-rinse processes after the EP process were found to be effective to decrease the field emmitter in recent studies, however, these are not perfect yet. We tried to test the sponge cleaning as the post EP process to remove the field emitter inside the cavcity. This article describe the results of series tests with a proto-type sponge-cleaning tool for single-cell cavity at KEK.

 
TU6RFP074 Long Pulse Marx Bank Modulator for the ILC high-voltage, impedance, controls, collider 1720
 
  • M.K. Kempkes, F.O. Arntz, J.A. Casey, R. Ciprian, M.P.J. Gaudreau, I. Roth
    Diversified Technologies, Inc., Bedford, Massachusetts
 
 

Funding: Funding by U.S. Department of Energy SBIR program.


Diversified Technologies, Inc. (DTI) has developed high power, solid-state Marx Bank modulators for a range of accelerators and colliders. We estimate the Marx topology can deliver equivalent performance to conventional designs, while reducing system costs by 25-50%. In this paper DTI will describe the application of Marx based technology to a long-pulse (140 kV, 160 A, 1.5 ms) modulator design focused on the International Linear Collider. The primary engineering challenge is minimizing the overall size and cost of the storage capacitors in the modulator. Unique choices in components and controls are needed, including the use of electrolytic capacitors. This paper will review recent progress in the development and testing of this long pulse Marx modulator built under a U.S. Department of Energy Phase II SBIR grant.

 
TU6RFP090 ILC Marx Modulator Development Program Status klystron, controls, status, high-voltage 1757
 
  • C. Burkhart, T.G. Beukers, M.A. Kemp, R.S. Larsen, K.J.P. Macken, M.N. Nguyen, J.J. Olsen, T. Tang
    SLAC, Menlo Park, California
 
 

Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515


A program is underway at SLAC to develop a Marx-topology klystron modulator for the International Linear Collider* project. It is envisioned as a smaller, lower cost, and higher reliability alternative to the bouncer-topology baseline design. The application requires 120 kV (±0.5%), 140 A, 1.6 ms pulses at a rate of 5 Hz. The Marx constructs the high voltage pulse without an output transformer, large at these parameters, by instead combining a number of lower voltage cells in series. The modularity of the Marx topology is further exploited to achieve a redundant, high-availability design. The ILC Marx employs solid state elements; IGBTs and diodes, to control the charge, discharge and isolation of the cells. The SLAC designs are oil-free; air is used for high voltage insulation and cooling. The first generation prototype, P1, is undergoing life testing. Development of a second generation prototype, P2, is underway. Status updates for both prototypes will be presented.


*ILC Reference Design Report, http://www.linearcollider.org/cms/?pid=1000437

 
WE3RAI01 Progress in High Gradient Accelerator Structure Research for Future Linear Colliders collider, damping, wakefield, vacuum 1872
 
  • S.G. Tantawi
    SLAC, Menlo Park, California
 
 

This talk will summarize progress towards high-gradient accelerator structures for a future multi-TeV linear collider. The research summarized will include the US high gradient research collaboration and the CLIC research program, and will include recent experimental results of testing a variety of accelerator structures with different frequencies, geometries and materials, and features that allow for wake field damping. The talk also presents the results of specialized material studies geared towards the understanding of surface fatigue limits due to high magnetic fields, and progress on the theory of rf breakdown in high vacuum structures and multipactoring in dielectric loaded structures.

 

slides icon

Slides

 
WE5PFP018 Results from the CLIC X-Band Structure Test Program at NLCTA HOM, damping, collider, linac 2027
 
  • C. Adolphsen, G.B. Bowden, V.A. Dolgashev, L. Laurent, S.G. Tantawi, F. Wang, J.W. Wang
    SLAC, Menlo Park, California
  • S. Döbert, A. Grudiev, G. Riddone, W. Wuensch, R. Zennaro
    CERN, Geneva
  • Y. Higashi, T. Higo
    KEK, Ibaraki
 
 

Funding: Work supported by the DOE under contract DE-AC02-76SF00515


As part of a SLAC-CERN-KEK collaboration on high gradient X-band structure research, several prototype structures for the CLIC linear collider study have been tested using two of the high power (300 MW) X-band rf stations in the NLCTA facility at SLAC. These structures differ in terms of their manufacturing (brazed disks and clamped quadrants), gradient profile (amount by which the gradient increases along the structure which optimizes efficiency and maximizes sustainable gradient) and HOM damping (use of slots or waveguides to rapidly dissipate dipole mode energy). The CLIC goal in the next few years is to demonstrate the feasibility of a CLIC-ready baseline design and to investigate alternatives which could bring even higher efficiency. This paper summarizes the high gradient test results from the NLCTA in support of this effort.

 
WE5PFP021 Klystron Cluster Scheme for ILC High Power RF Distribution klystron, linac, coupling, cavity 2036
 
  • C.D. Nantista, C. Adolphsen
    SLAC, Menlo Park, California
 
 

Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.


We present a concept for powering the main linacs of the International Linear Collider (ILC) by delivering high power RF from the surface via overmoded, low-loss waveguides at widely spaced intervals. The baseline design employs a two-tunnel layout, with klystrons and modulators evenly distributed along a service tunnel running parallel to the accelerator tunnel. This new idea eliminates the need for the service tunnel. It also brings most of the warm heat load to the surface, dramatically reducing the tunnel water cooling and HVAC requirements. In the envisioned configuration, groups of 70 klystrons and modulators are clustered in surface buildings every 2.4 km. Their outputs are combined into two half-meter diameter circular TE01 mode evacuated waveguides. These are directed via special bends through a deep shaft and along the tunnel, one upstream and one downstream. Each feeds approximately 1.2 km of linac with power tapped off in 10 MW portions at 38 m intervals. The power is extracted through a novel coaxial tapoff (CATO), after which the local distribution is as it would be from a klystron. This tapoff design is also employed in reverse for the initial combining.

 
WE5PFP046 Dark Current Simulation for the CLIC T18 High Gradient Structure simulation, electron, cavity, collider 2101
 
  • Z. Li, A.E. Candel, L. Ge, K. Ko, C.-K. Ng, G.L. Schussman
    SLAC, Menlo Park, California
  • S. Döbert, M. Gerbaux, A. Grudiev, W. Wuensch
    CERN, Geneva
  • T. Higo, S. Matsumoto, K. Yokoyama
    KEK, Ibaraki
 
 

Funding: This work was supported by DOE Contract No. DE-AC02-76SF00515 and used resources of NERSC supported by DOE Contract No. DE-AC02-05CH11231, and of NCCS supported by DOE Contract No. DE-AC05-00OR22725.


Normal conducting accelerator structures such as the X-Band NLC structures and the CLIC structures have been found to suffer damage due to RF breakdown and/or dark current when processed to high gradients. Improved understanding of these issues is desirable for the development of structure designs and processing techniques that improve the structure high gradient performance. While vigorous experimental efforts have been put forward to explore the gradient parameter space via high power testing, comprehensive numerical multipacting and dark current simulations would complement measurements by providing an effective probe for observing interior quantities. In this paper, we present studies of multipacting, dark current, and the associated surface heating in high gradient accelerator structures using the parallel finite element simulation code Track3P. Comparisons with the high power test of the CLIC accelerator structures will be presented.

 
WE6PFP024 ATF2 Ultra-Low IP Betas Proposal emittance, lattice, octupole, simulation 2540
 
  • R. Tomás, H.-H. Braun, J.-P. Delahaye, A. Marin, D. Schulte, F. Zimmermann
    CERN, Geneva
  • D. Angal-Kalinin, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S. Bai, J. Gao, X.W. Zhu
    IHEP Beijing, Beijing
  • P. Bambade, M. Renier
    LAL, Orsay
  • Y. Honda, S. Kuroda, T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • A. Scarfe
    UMAN, Manchester
  • A. Seryi, G.R. White, M. Woodley
    SLAC, Menlo Park, California
 
 

The CLIC Final Focus System has considerably larger chromaticity than those of ILC and its scaled test machine ATF2. We propose to reduce the IP betas of ATF2 to reach a CLIC-like chromaticity. This would also allow to study the FFS tuning difficulty as function of the IP beam spot size. Both the ILC and CLIC projects will largely benefit from the ATF2 experience at these ultra-low IP betas.

 
WE6PFP077 Beam Test Results with the FONT4 ILC Prototype Intra-Train Beam Feedback System feedback, kicker, extraction, collider 2676
 
  • P. Burrows, R. Apsimon, C.I. Clarke, B. Constance, H. Dabiri Khah, A.F. Hartin, C. Perry, J. Resta-López, C. Swinson
    JAI, Oxford
  • G.B. Christian
    ATOMKI, Debrecen
  • A. Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

We present the results of beam tests of the FONT4 ILC prototype intra-train beam feedback system. The system comprises a stripline BPM, a fast analogue BPM signal processor, a custom FPGA-based digital feedback board, a high-power fast-response drive amplifier, and a stripline kicker. The hardware was deployed at the Accelerator Test Facility at KEK. Trains comprising three electron bunches were extracted from the ATF damping ring, with bunch spacing c. 150ns. The feedback loop was closed by measuring the position of bunch 1 and correcting bunches 2 and 3. We report the performance of the feedback, including gain studies, the correction dynamic range, latency measurement, and quality of the beam position correction. The system achieved micron-level bunch stabilisation with a latency of c. 140ns.

 
WE6PFP078 Functional Requirements on the Design of the Detectors and the Interaction Region of an e+e- Linear Collider with a Push-Pull Arrangement of Detectors alignment, shielding, radiation, luminosity 2679
 
  • T.W. Markiewicz, M. Oriunno, A. Seryi
    SLAC, Menlo Park, California
  • K. Buesser
    DESY, Hamburg
  • P. Burrows
    OXFORDphysics, Oxford, Oxon
  • J.M. Hauptman
    ISU, Ames
  • A.A. Mikhailichenko
    CLASSE, Ithaca, New York
  • B. Parker
    BNL, Upton, Long Island, New York
  • T. Tauchi
    KEK, Ibaraki
 
 

Funding: Work supported in part by US DOE contract DE-AC02-76-SF00515.


The Interaction Region of the International Linear Collider* is based on two experimental detectors working in a push-pull mode. A time efficient implementation of this model sets specific requirements and challenges for many detector and machine systems, in particular the IR magnets, the cryogenics and the alignment system, the beamline shielding, the detector design and the overall integration. This paper attempts to separate the functional requirements of a push pull interaction region and machine detector interface from the conceptual and technical solutions being proposed by the ILC Beam Delivery Group and the three detector concepts**. As such, we hope that it provides a set of ground rules for interpreting and evaluation the MDI parts of the proposed detector concept’s Letters of Intent, due March 2009. The authors of the present paper are the leaders of the IR Integration Working Group within Global Design Effort Beam Delivery System and the representatives from each detector concept submitting the Letters Of Intent.


*ILC Reference Design Report, ILC-Report-2007-01.
**Materials of IR Engineering Design Workshop, 2007, http://www-conf.slac.stanford.edu/ireng07

 
WE6PFP079 Conceptual Design of the Drive Beam for a PWFA-LC linac, collider, plasma, klystron 2682
 
  • S. Pei, M.J. Hogan, T.O. Raubenheimer, A. Seryi
    SLAC, Menlo Park, California
  • H.-H. Braun, R. Corsini, J.-P. Delahaye
    CERN, Geneva
 
 

Funding: Work supported by the DOE under contract DE-AC02-76SF00515.


Plasma Wake-Field Acceleration (PWFA) has demonstrated acceleration gradients above 50 GeV/m. Simulations have shown drive/witness bunch configurations that yield small energy spreads in the accelerated witness bunch and high energy transfer efficiency from the drive bunch to the witness bunch, ranging from 30% for a Gaussian drive bunch to 95% for bunch with triangular shaped longitudinal profile. These results open the opportunity for a linear collider that could be compact, efficient and more cost effective than the present microwave technologies. A concept of a PWFA-based Linear Collider (PWFA-LC) has been developed by the PWFA collaboration. Here we will describe the conceptual design and optimization of the drive beam, which includes the drive beam linac and distribution system. We apply experience of the CLIC drive beam design and demonstration in the CLIC Test Facility (CTF3) to this study. We discuss parameter optimization of the drive beam linac structure and evaluate the drive linac efficiency in terms of the drive beam distribution scheme and the klystron / modulator requirements.

 
WE6PFP081 A Concept of Plasma Wake Field Acceleration Linear Collider (PWFA-LC) collider, plasma, acceleration, wakefield 2688
 
  • A. Seryi, M.J. Hogan, S. Pei, T.O. Raubenheimer, P. Tenenbaum
    SLAC, Menlo Park, California
  • C. Huang, C. Joshi, W.B. Mori
    UCLA, Los Angeles, California
  • T.C. Katsouleas
    Duke University, Durham, North Carolina
  • P. Muggli
    USC, Los Angeles, California
 
 

Funding: Work supported by the DOE under contract DE-AC02-76SF00515.


Plasma Wake-Field Acceleration (PWFA) has demonstrated acceleration gradients above 50 GeV/m. Simulations have shown drive/witness bunch configurations that yield small energy spreads in the accelerated witness bunch and high energy transfer efficiency from the drive bunch to the witness bunch, ranging from 30% for a Gaussian drive bunch to 95% for shaped longitudinal profile. These results open the opportunity for a linear collider that could be compact, efficient and more cost effective that the present microwave technologies. A concept of a PWFA-based Linear Collider (PWFA-LC) has been developed and is described in this paper. The scheme of the drive beam generation and distribution, requirements on the plasma cells, and optimization of the interaction region parameters are described in detail. The research and development steps, necessary for further development of the concept, are also outlined.

 
WE6PFP082 Power Saving Optimization for Linear Collider Interaction Region Parameters cavity, luminosity, collider, focusing 2691
 
  • A. Seryi
    SLAC, Menlo Park, California
 
 

Funding: Work supported by the DOE under contract DE-AC02-76SF00515.


Optimization of Interaction Region parameters of a TeV energy scale linear collider has to take into account constraints defined by phenomena such as beam-beam focusing forces, beamstrahlung radiation, and hour-glass effect. With those constraints, achieving a desired luminosity of about 2·1034 would require use of e+e- beams with about 10 MW average power. It is shown in this paper that application of the ‘‘travelling focus'' regime [V.Balakin, 1991] may allow reduction of required beam power by at least a factor of two, helping cost reduction of the collider, while keeping the beamstrahlung energy loss reasonably low. The technique is illustrated in application to 500 GeV CM parameters of the International Linear Collider. Application of this technique may also in principle allow recycling the e+e- beams and/or recuperation of their energy.

 
WE6RFP035 Design of Momentum Spoilers for the Compact Linear Collider collimation, radiation, linac, wakefield 2866
 
  • J.-L. Fernandez-Hernando
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • J. Resta-López
    JAI, Oxford
 
 

The postlinac energy collimation system of the Compact Linear Collider (CLIC) protects the machine by intercepting mis-steered beams due to possible failure modes in the linac. The collimation is based in a spoiler-absorber scheme. The mission of the spoiler is to protect the main downstream absorber by dispersing the beam, via multiple Coulomb scattering, in case of a direct hit. We present the design of energy spoilers for CLIC, considering the following requirements: spoiler survival to the deep impact of an entire bunch train, and minimisation of spoiler wakefield effects during normal operation. Different configurations of the spoiler are studied in order to achieve an optimum performance.

 
TH3GBI01 Two-Beam Linear Colliders – Special Issues linac, acceleration, electron, collider 3100
 
  • R. Corsini
    CERN, Geneva
 
 

The path towards a multi-TeV e+e- linear collider proposed by the CLIC study is based on the Two Beam Acceleration scheme. Such a scheme is promising in term of efficiency, reliability and cost. The rationale behind the two-beam scheme is discussed in the paper, together with the special issues related to this technology and the R&D needed to demonstrate its feasibility.

 

slides icon

Slides

 
TH5RFP070 Nanometer Resolution Beam Position Monitor for the ATF2 Interaction Point Region cavity, extraction, coupling, collider 3603
 
  • A. Heo, E.-S. Kim, H.-S. Kim
    Kyungpook National University, Daegu
  • R. Ainsworth, S.T. Boogert, G.E. Boorman
    Royal Holloway, University of London, Surrey
  • Y. Honda, T. Tauchi, N. Terunuma
    KEK, Ibaraki
  • S.H. Kim, Y.J. Park
    PAL, Pohang, Kyungbuk
  • A. Lyapin, B. Maiheu, M. Wing
    UCL, London
  • J. May, D.J. McCormick, S. Molloy, J. Nelson, T.J. Smith, G.R. White
    SLAC, Menlo Park, California
  • S. Shin
    Fermilab, Batavia
  • D. Son
    CHEP, Daegu
  • D.R. Ward
    University of Cambridge, Cambridge
 
 

The ATF2 international collaboration is intending to demonstrate nanometer beam sizes required for the future Linear Colliders. The position of the electron beam focused down at the end of the ATF2 extraction line to a size as small as 35 nm has to be measured with nanometer resolution. For that purpose a special Interaction Point(IP) beam position monitor (BPM) was designed. In this paper we report on the features of the BPM and electronics design providing the required resolution. We also consider the results obtained with BPM triplet which was installed in the ATF beamline and the first data from ATF2 commissioning runs.

 
TH5RFP081 Ground Vibration and Coherence Length Measurements for the CLIC Nano-Stabilization Studies ground-motion, site, alignment, emittance 3636
 
  • K. Artoos, O. Capatina, C.G.R.L. Collette, M. Guinchard, C. Hauviller, M.V. Sylte
    CERN, Geneva
  • B. Bolzon, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
 
 

The demanding nanometer transverse beam sizes and emittances in future linear accelerators results in stringent alignment and nanometer vibration stability requirements. For more than two decades, ground vibration measurements were made by different teams for feasibility studies of linear accelerators. Recent measurements were performed in the LHC tunnel and at different CERN sites on the surface. The devices to measure nanometer sized vibrations, the analysis techniques and the results are critically discussed and compared with former measurement campaigns. The implications of the measured integrated R.M.S. displacements and coherence length for the CLIC stabilization system are mentioned.

 
TH5RFP086 Linear Collider Test Facility: ATF2 Final Focus Active Stabilisation Pertinence quadrupole, collider, ground-motion, simulation 3651
 
  • B. Bolzon, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P. Bambade
    KEK, Ibaraki
  • Y. Renier
    LAL, Orsay
  • A. Seryi
    SLAC, Menlo Park, California
 
 

Funding: Work supported by the Agence Nationale de la Recherche of the French Ministry of Research (Programme Blanc, Project ATF2-IN2P3-KEK, contract ANR-06-BLAN-0027).


CLIC is one of the current projects of linear colliders. Achieving a vertical beam size of 1 nm at the Interaction Point (IP) with several nanometers of fast ground motion imposes an active stabilization of final doublet magnets (FD) at a tenth of nm above 4Hz. ATF2 is a test facility for linear colliders whose first aim is to have a vertical beam size of 37nm. Relative motion tolerance between FD and the IP is of 7nm above 0.1Hz. Because ground motion is coherent between these two elements, they were fixed to the floor so that they move in a coherent way. Investigations are going on to have in 2011 a useful active stabilization for ATF2 in order to use it as a CLIC prototype. Parameters of a 2D ground motion generator were fitted on measurements to reproduce spatial and temporal spectra, so it can be used for ATF2 simulations. Thus, we evaluated the ideal response function that an active stabilization FD system would need to have to improve on the present ATF2 system. Because ground motion coherence is lost with upstream magnets, we simulated the integrated vibrations at the IP to evaluate the usefulness of their stabilization. These results were validated with measurements.

 
TH5RFP091 Latest Data from the Linear Collider Alignment Survey Project (LiCAS) alignment, survey, simulation, laser 3666
 
  • A. Reichold, C. Uribe Estrada, D. Urner, S.Q. Yang
    OXFORDphysics, Oxford, Oxon
  • P.J. Brockill, J. Dale, M. Jones, G.R. Moss, R. Wastie
    JAI, Oxford
  • M. Schlösser
    DESY, Hamburg
 
 

Funding: work supported by STFC in the LC-ABD collaboration and by the Commission of the European Community, 6th Framework Programme, Structuring the European Research Area, contract number RIDS-011899


The Linear Collider Alignment and Survey group has completed experiments with a prototype robotic survey train for the ILC called the RTRS (Rapid Tunnel Reference Surveyor). Calibration of the RTRS is the most difficult part of data analysis, involving advanced mathematical methods to obtain constraint independent calibration parameters and errors. We show how sub-system data analysis provides input errors for the calibration process. We present the mathematical formalism used and results from the calibration of one of the three cars.

 
TH5RFP098 Development of a Photonic Crystal Fibre Laser Amplifier for Particle Beam Diagnostics laser, coupling, electron, collider 3681
 
  • L.J. Nevay, G.A. Blair, S.T. Boogert, D.F. Howell, R. Walczak
    JAI, Oxford
  • L. Corner, N. Delerue, L.J. Nevay, M. Newman, M. Rosenberger
    OXFORDphysics, Oxford, Oxon
 
 

Funding: Work supported by the STFC LC-ABD collaboration and the Commission of the European Communities under the 6th Framework Programme Structuring the European Research Area, contract RIDS-011899


We present the latest results on the development of a high power fibre laser system for the laser-wire project on ILC-like laser based beam diagnostics. The laser consists of a crystal oscillator at ~ 1um that can be synchronised to an external frequency reference followed by chirped pulse amplification in ytterbium doped double clad fibre. This system produces 1uJ pulses in an adjustable burst envelope at a chosen frequency. These pulses are further amplified in a large mode area rod type photonic crystal fibre, allowing amplification to high pulses energies whilst maintaining a single spatial mode. The fibre is pumped in pulsed mode by a specially commissioned 400W diode laser fixed at the absorption peak of ytterbium at 976nm, independent of pumping regime. Pumping in a pulsed mode allows the high energies required for laser-wire at MHz repetition rates to be created without the need for active cooling of the laser. The light is frequency doubled to ~500nm to achieve higher laser-wire resolution.

 
TH6REP074 Development of a Fast Micron-Resolution Beam Position Monitor Signal Processor for Linear Collider Beam-Based Feedback Systems feedback, single-bunch, electron, collider 4126
 
  • P. Burrows, R. Apsimon, C.I. Clarke, B. Constance, H. Dabiri Khah, A.F. Hartin, C. Perry, J. Resta-López, C. Swinson
    JAI, Oxford
  • G.B. Christian
    ATOMKI, Debrecen
  • A. Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

We present the design of prototype fast beam position monitor (BPM) signal processors for use in inter-bunch beam-based feedbacks for linear colliders and electron linacs. We describe the FONT4 intra-train beam-based digital position feedback system prototype deployed at the Accelerator test facility (ATF) extraction line at KEK, Japan. The system incorporates a fast analogue beam position monitor front-end signal processor, a digital feedback board, and a fast kicker-driver amplifier. The total feedback system latency is less than 150ns, of which less than 10ns is used for the BPM processor. We report preliminary results of beam tests using electron bunches separated by c. 150ns. Position resolution of order 1 micron is obtained.

 
FR1RAI01 CLIC Overview linac, damping, emittance, collider 4195
 
  • R. Tomás
    CERN, Geneva
 
 

The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum considerably boosting the CLIC study.

 

slides icon

Slides

 
FR5PFP014 Errors in Beam Emittance Measurement in a Transport Channel emittance, quadrupole, simulation, linac 4338
 
  • Y.K. Batygin
    NSCL, East Lansing, Michigan
  • M. Woodley
    SLAC, Menlo Park, California
 
 

Determination of exact values of beam emittance is important for future linear collider. Beam emittance measurements technique is based on measurement of beam sizes at several beam profile stations in a quadrupole channel shifted between each other by a specific value of phase advance of betatron oscillations. Four-dimensional beam emittance measuremenst requires determination of ten values of the beam σ-matrix, while two-dimensional beam emittance measurements scheme requires determination of six values of σ-matrix. Measurement procedure is sensitive to variation of beam sizes at the beam profile stations, which might result in unstable determination of beam emittance. Paper discusses errors of beam emittance measurements as a function of errors in beam size measurement. Regions of stable and unstable beam emittance measurements are determined.

 
FR5RFP041 Full Structure Simulations of ILC Collimators wakefield, simulation, vacuum, collider 4622
 
  • J.D.A. Smith
    Cockcroft Institute, Warrington, Cheshire
 
 

The prototype collimator of the ILC is simulated, to address potential issues with trapped modes and heating. A number of codes are benchmarked, and the interplay between resistive and geometric wakefields is carefully considered.

 
FR5RFP066 Higher Order Modes in a String of Multi-Cell Accelerating Structures higher-order-mode, damping, linac, simulation 4685
 
  • Y. Morozumi
    KEK, Ibaraki
 
 

The International Linear Collider will employ tens of thousands of superconducting 9-cell accelerating structures for its main linacs. Damping of higher order modes is crucial to beam stability. Study of higher order modes, however, tends to focus on trapped modes in a single 9-cell structure model alone both in simulation and measurement. Propagating modes above cut-off frequencies are left untouched because of difficulty of a realistic model of multiple 9-cell structures. We have simulated a full spectrum of higher order modes in a long string of 9-cell structures.