A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

betatron

Paper Title Other Keywords Page
MO4RAC04 First Polarized Proton Collisions at a Beam Energy of 250 GeV in RHIC polarization, resonance, proton, injection 91
 
  • M. Bai, L. A. Ahrens, J.G. Alessi, G. Atonian, A. Bazilevsky, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, G. Ganetis, C.J. Gardner, R.L. Gill, J.W. Glenn, Y. Hao, T. Hayes, H. Huang, R.L. Hulsart, A. Kayran, J.S. Laster, R.C. Lee, A.U. Luccio, Y. Luo, W.W. MacKay, Y. Makdisi, G.J. Marr, A. Marusic, G.T. McIntyre, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, B. Morozov, J. Morris, P. Oddo, B. Oerter, F.C. Pilat, V. Ptitsyn, D. Raparia, G. Robert-Demolaize, T. Roser, T. Russo, T. Satogata, V. Schoefer, K. Smith, D. Svirida, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


After having provided collisions of polarized protons at a beam energy of 100 GeV since 2001, the Relativistic Heavy Ion Collider~(RHIC) at BNL reached its design energy of polarized proton collision at 250 GeV. With the help of the two full Siberian snakes in each ring as well as careful orbit correction and working point control, polarization was preserved during acceleration from injection to 250~GeV. During the course of the Physics data taking, the spin rotators on either side of the experiments of STAR and PHENIX were set up to provide collisions with longitudinal polarization at both experiments. Various techniques to increase luminosity like further beta star squeeze and RF system upgrades as well as gymnastics to shorten the bunch length at store were also explored during the run. This paper reports the performance of the run as well as the plan for future performance improvement in RHIC.

 

slides icon

Slides

 
MO6PFP033 Magnet Design for Proton and Carbon Ion Synchrotron for Cancer Therapy septum, synchrotron, extraction, sextupole 211
 
  • H.S. Suh, H.-S. Kang, Y.G. Young-Gyu
    PAL, Pohang, Kyungbuk
 
 

Funding: * Work supported by Korean Ministry of Education Science and Technology


The magnets for a medical synchrotron were designed. The synchrotron is for cancer therapy with proton and carbon-iron beams. The magnets for the injection include a septum magnet and an electrostatic septum magnet. And the magnets for the extraction include a resonance sextupole magnet, an electrostatic septum magnet, a thin septum magnet, and a thick septum magnet. The design achieved good field uniformity and acceptable leakage field level. We used 3D code for the electromagnetic simulation and the optimization of magnetic structures. In this paper, the basic design process for the injection and extraction magnets will be presented.

 
TU3PBC03 Transverse Schottky Noise with Space Charge space-charge, simulation, synchrotron, ion 724
 
  • O. Boine-Frankenheim, V. Kornilov, S. Paret
    GSI, Darmstadt
 
 

The effect of space charge on the transverse Schottky spectrum of coasting and bunched beams is studied using measurements and simulations together with analytic models. The measurements of transverse Schottky bands from heavy ion beams are performed in the SIS-18 synchrotron at GSI. In addition we analyze the noise spectrum from a particle tracking code with self-consistent space charge. Both results are compared to analytic models for coasting and for bunched beams with space charge. For coasting beams an analytic model based on the transverse dispersion relation with linear space and chromaticity reproduces the characteristic deformation of Schottky bands with increasing space charge, observed in both measurement and simulation. For bunched beams we find good agreement between the observed shifts of synchrotron satellites and a simplified model for head-tail modes with space charge. The relevance of the results for the analysis of transverse beam stability in the presence of space charge is emphasized.

 

slides icon

Slides

 
TU5PFP022 COSY as Ideal Test Facility for HESR RF and Stochastic Cooling Hardware target, cavity, pick-up, proton 861
 
  • R. Stassen, F.J. Etzkorn, R. Maier, D. Prasuhn, H. Stockhorst
    FZJ, Jülich
  • L. Thorndahl
    CERN, Geneva
 
 

The COoler SYnchrotron COSY at the Forschungszentrum Jülich is operating now since 1992. Up to 5*1010 protons can be delivered over a momentum range of 600 MeV/c to 3.6 GeV/c. The prototype of the HESR barrier bucket cavity was installed into COSY and many measurements have been performed. Especially the co-operation of barrier bucket with stochastic cooling has been studied. During the measurements the internal WASA Pellet target was available which is similar to the PANDA target at the HESR. A 1.2m long cryo-tank has been designed and installed to measure the sensitivities of new pickup structures for the HESR stochastic cooling system. Tank design and structures arrangement correspond to the projected HESR stochastic cooling layout. The recent results will be presented.

 
TU5RFP002 Alternate Hybrid Mode Bunch Patterns for the Advanced Photon Source injection, sextupole, kicker, emittance 1084
 
  • L. Emery, K.C. Harkay, V. Sajaev
    ANL, Argonne
 
 

Funding: This work was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


The Advanced Photon Source is filled for five weeks per year in a special bunch (hybrid) pattern of one large 16-mA (74-nC) bunch in a gap of 3 microseconds, and the remaining 86 mA in 8 trains of 7 consecutive bunches, forming a 500-microsecond-long bunch train. We are developing variations of this bunch pattern, which might have 3 large bunches equally spaced in the 3-microsecond gap in a 4-mA, 16-mA, and 8-mA distribution. The 500-microsecond-long bunch train could be changed to 2 or 3 bunch trains of 7 bunches. We report on the difficulties in bringing these into future operations: impedance-driven injection losses, sextupoles in injection section, lifetime and topup injection limit, and beam diagnostics responses to the patterns.

 
TU5RFP039 Using Synchrobetatron Resonances to Generate a Crabbed Beam at the ALS synchrotron, photon, coupling, single-bunch 1180
 
  • C.T. Hliang, D. Robin, F. Sannibale, W. Wan
    LBNL, Berkeley, California
  • W. Guo
    BNL, Upton, Long Island, New York
 
 

Funding: Supported by DOE BES contract DE-AC03-76SF00098.


Several years ago experiments at the APS demonstrated the possibility of creating crabbed beam through vertically kicking the beam and letting it oscillate for a half of a synchrotron period. Such a crabbed beam would allow the possibility of creating a few ps xrays. At the ALS we have repeated these experiments. In this paper we will present the results obtained and compare them to theoretical predictions.

 
TU5RFP084 Beam Optics Study for the Compact ERL in Japan emittance, optics, cavity, sextupole 1284
 
  • T. Shiraga, N. Nakamura, H. Takaki
    ISSP/SRL, Chiba
  • R. Hajima
    JAEA/ERL, Ibaraki
  • K. Harada, Y. Kobayashi, T. Miyajima, S. Sakanaka, M. Shimada
    KEK, Ibaraki
 
 

A compact ERL (energy recovery linac) is planned in Japan in order to demonstrate excellent ERL performances and to test key components such as low-emittance photocathode gun and superconducting RF cavity. We studied and optimized the compact ERL optics (except the injector part) to generate a subpico-second bunch in bunch compression mode and to preserve the beam emittance in normal and low-emittance mode. As a result, we could obtain a very short bunch of about 50 fs with a charge of 77 pC in bunch compression mode and almost keep the normalized emittance of 0.1 mm mrad with a charge of 7.7 pC in low-emittance mode. We also designed it to achieve efficient energy recovery at the superconducting RF cavities and to transport the beam to the dump section without serious loss. The design study of the compact ERL optics was carried out with the simulation code Elegant, including CSR(coherent synchrotron radiation) effects. In this paper, we will present the results of the beam optics study for the compact ERL.

 
TU6PFP012 Extra Dose Reduction by Optimizing RF-KO Slow-Extraction at HIMAC ion, controls, extraction, simulation 1318
 
  • K. Mizushima, T. Furukawa, Y. Iwata, K. Noda, S. Sato, T. Shirai
    NIRS, Chiba-shi
  • T. Fujisawa, H. Uchiyama
    AEC, Chiba
 
 

A 3D scanning method gated with patient's respiration has been developed for the HIMAC new treatment facility. In the scanning irradiation, the RF-KO slow-extraction method has been used, because of the quick response to beam on/off from the synchrotron. However, a small amount of beam remained just inside the separatrix is extracted just before turning on the transverse RF field, which brings the extra dose. We proposed to apply another transverse RF-frequency component matched with the betatron frequency of the particles in the vicinity of the stopband, in addition to the original transverse RF field for the RF-KO slow-extraction. Using the proposed method, the particles just inside the separatrix, which cause the extra dose, can be selectively extracted during the irradiation; as a result, the extra dose can also be reduced. The validity of this approach has been verified by the simulation and the measurement with the non-distractive 2D beam profile monitor. We will report the result of this approach.

 
TU6PFP047 Magnet Design and Testing of a FFAG Betatron for Industrial and Security Applications magnet-design, linac, status, induction 1390
 
  • S. Boucher, R.B. Agustsson, P. Frigola, A.Y. Murokh, M. Ruelas
    RadiaBeam, Marina del Rey
  • F.H. O'Shea, J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
 
 

The fixed-field alternating-gradient (FFAG) betatron has emerged as a viable alternative to RF linacs as a source of high-energy radiation for industrial and security applications. RadiaBeam Technologies is currently developing an FFAG betatron with a novel induction core made with modern low-loss magnetic materials. The principle challenge in the project has been the design of the magnets. In this paper, we present the current status of the project, including results of the magnet design and testing.

 
TU6PFP064 Feasibility of a Common Proton Driver for a Neutron Spallation Source and a Neutrino Factory factory, neutron, proton, target 1433
 
  • J. Pasternak, M. Aslaninejad, K.R. Long
    Imperial College of Science and Technology, Department of Physics, London
  • J. Pasternak, J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
 

Multi MW Proton Driver in the few GeV range are required for a neutron spallation source being studied in the framework of the ISIS upgrade at RAL and for the production of muon beam for a Neutrino Factory. Although the requirements for the time structure of proton beams are different, we investigate the possibility to share the proton driver between the two facilities. We assume the beam for both facilities is accelerated in a linac followed by rapid cycling synchrotron (RCS) at 50 Hz repetition rate to 3.2 GeV. One part of the bunch train after extraction from the RCS can be sent to the neutron production target and the other part of the extracted beam can be sent to another RCS, where further acceleration and final bunch compression can be performed to meet the specification of the Neutrino Factory target. The preliminary study of the final bunch compression is presented.

 
WE2PBC01 Local Chromaticity Measurement Using the Response Matrix Fit at the APS sextupole, quadrupole, lattice, focusing 1849
 
  • V. Sajaev
    ANL, Argonne
 
 

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


The response matrix fit is routinely used at APS for linear optics correction. The high accuracy of the method enables us to measure the variation of betatron phase advance around the ring with rf frequency. This variation can be used to calculate local chromaticity. Such measurements were first performed at the APS at the moment when a sextupole was mistakenly connected with the wrong polarity. Local chromaticity calculations clearly pointed to the location of the sextupole error. Results and details of the measurements are reported and discussed.

 

slides icon

Slides

 
WE2PBC02 A New Mode for Operation with Insertion Devices at UVX wiggler, insertion, insertion-device, injection 1852
 
  • L. Liu, R.H.A. Farias, X.R. Resende, P.F. Tavares
    LNLS, Campinas
 
 

UVX is a 1.37 GeV electron storage ring at the Brazilian Synchrotron Light Laboratory (LNLS). The ring is composed of a 6-fold symmetric double-bend achromat lattice with 4 sections reserved for insertion devices. The storage ring was commissioned in 1997 in a mode of operation with high (~12 m) vertical betatron functions in the insertion straights. However, the need for operation with reduced vertical aperture arose with the gradual installation of insertion devices over the years and is particularly important for operation with a 14 mm vertical aperture superconducting wiggler scheduled for installation in late 2009. To cope with this restricted aperture, a new mode with low (~0.8 m) vertical betatron function in all six long straights was deemed necessary and was implemented at the end of 2008. In this report we present the commissioning results of the low vertical beta mode and the advantages in operating in this mode with insertions.

 

slides icon

Slides

 
WE3PBI02 Study of Beam Dynamics during the Crossing of the Third-Order Resonance at VEPP-4M resonance, damping, octupole, collider 1894
 
  • P.A. Piminov, S.A. Glukhov, E.B. Levichev, O.I. Meshkov, S.A. Nikitin, I.B. Nikolaev, A.N. Zhuravlev
    BINP SB RAS, Novosibirsk
 
 

The influence of resonances on the beam dynamics in storage rings is of substantial interest to accelerator physics. For example, a fast crossing of resonances occurs in the damping rings of future linear colliders during the beam damping (due to the incoherent shift) can result in a loss of particles. We have studied experimentally the crossing of resonances of different power near the working point of the VEPP-4M storage ring. Observation of the beam sizes and particle losses was performed with a single-turn time resolution. Comparison with the numerical simulation has been made and will be presented alongside the experimental results.

 

slides icon

Slides

 
WE5PFP075 The New CERN PS Transverse Damper kicker, injection, pick-up, damping 2183
 
  • A. Blas, J.M. Belleman, E. Benedetto, F. Caspers, D.C. Glenat, R. Louwerse, M. Martini, E. Métral, V. Rossi, J.P.H. Sladen
    CERN, Geneva
 
 

Since 1999 the PS has been operated without active transverse damping thanks to an increase of the coupling between the transverse planes and the reduction of injection steering errors. Although the LHC requirements are met by these means, a new transverse feedback system has been commissioned to reinforce the robustness of operation and avoid the blow-up generated by residual injection steering errors. This system could also allow the reduction of the chromaticity and reduce the slow incoherent losses during the long PS injection plateau. It could also stabilize the high energy instabilities that appear occasionally with the LHC nominal beam and may be a limiting factor for ultimate LHC beam. Highlights include a signal processing with an automatic delay adapting itself to the varying revolution frequency, a programmable betatron phase adjustment along the cycle, pick-ups that have been re-furbished with electronics covering the very low frequency of the first betatron line and a compact wideband high-power solid state amplifier that drives the strip-line kicker via an impedance matching transformer. The overall system is described together with experimental results.

 
WE5RFP008 Ultra-Low Vertical Emittance at the SLS quadrupole, coupling, emittance, sextupole 2279
 
  • M. Böge, A. Lüdeke, A. Streun
    PSI, Villigen
  • Å. Andersson
    MAX-lab, Lund
 
 

Utilizing a large number of non-dispersive (24) and dispersive (6) skew quadrupoles the betatron coupling and the vertical spurious dispersion can be simultaneously reduced to extremely small values. As a result the achieved vertical emittance begins to approach its ultimate limit, set by the fundamental quantum nature of synchrotron radiation, which in the SLS case is ~0.55 pm.rad. At the same time emittance measurements based on the fitting of a diffraction limited vertical photon beam from a dipole have been pushed to the limit in order to verify this ultra-low vertical emittance.

 
WE6PFP014 Chromatic LHC Optics Effects on Collimation Phase Space Cuts optics, insertion, collimation, injection 2510
 
  • C. Bracco, R.W. Assmann
    CERN, Geneva
 
 

The different levels of LHC collimators must be set up by respecting a strict setting hierarchy in order to guarantee the required performance and protection during the different operational machine stages. The available margins are a fraction of a beam σ. Two different sub-systems establish betatron and momentum collimation for the LHC. Collimator betatronic phase space cuts are defined for a central on-momentum particle. However, due to the chromatic features of the LHC optics and energy deviations of particles, the different phase space cuts become coupled. Starting from the basic equation of the transverse beam dynamics, the influence of off-momentum beta-beat and dispersion on the effective collimator settings has been calculated. The results are presented, defining the allowed phase space regions from LHC collimation. The impacts on collimation-related setting tolerances and the choice of an optimized LHC optics are discussed.

 
WE6PFP022 Beta-Beating Corrections in the SPS as a Testbed for the LHC optics, closed-orbit, simulation, sextupole 2534
 
  • R. Tomás, M. Aiba, G. Vanbavinckhove, J. Wenninger
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
  • A. Morita
    KEK, Ibaraki
 
 

For several years optics measurement and correction algorithms have been developed for the LHC. During 2008 these algorithms have been directly tested in the SPS and RHIC. The experimental results proving the readiness of the applications are presented.

 
WE6PFP027 Beam Losses and Background Loads on Collider Detectors due to Beam-Gas Interactions in the LHC scattering, proton, beam-losses, background 2549
 
  • A.I. Drozhdin, N.V. Mokhov, S.I. Striganov
    Fermilab, Batavia
 
 

Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.


With a fully-operational high-efficient collimation system in the LHC, nuclear interactions of circulating protons with residual gas in the machine beam pipe can be a major sources of beam losses in the vicinity of the collider detectors, responsible for the machine-induced backgrounds. Realistic modeling of elastic and inelastic interactions of 7-TeV protons with nuclei in the vacuum chamber of the cold and warm sections of the LHC ring - with an appropriate pressure profile - is performed with the STRUCT and MARS15 codes. Multi-turn tracking of the primary beams, propagation of secondaries through the lattice, their interception by the tertiary collimators TCT as well as properties of corresponding particle distributions at the CMS and ATLAS detectors are studied in great detail and results presented in this paper.

 
WE6PFP031 Simulations of Long-Range Beam-Beam Compensation in LHC dynamic-aperture, simulation, proton, beam-losses 2558
 
  • H.J. Kim, T. Sen
    Fermilab, Batavia
 
 

Abstract The compensation of long-range beam-beam interactions with current carrying wires in the Large Hadron Collider (LHC) is studied by multi-particle tracking. In the simulations, we include the effect of long-range collisions together with the nonlinearities of IR triplets, sextupoles, and head-on collisions. The model includes the wires placed at the locations reserved for them in the LHC rings. We estimate the optimal parameters of a wire for compensating the parasitic beam-beam force by long-term simulations of beam lifetime.

 
WE6PFP032 Beam-Beam Compensation Using Electron Lens in RHIC electron, proton, dynamic-aperture, simulation 2561
 
  • H.J. Kim, T. Sen
    Fermilab, Batavia
 
 

A beam-beam simulation code (BBSIMC) has been developed to study the interaction between counter moving beams in colliders and its compensation through a low energy electron beam. This electron beam is expected to improve intensity lifetime and luminosity of the colliding beams by reducing the betatron tune shift and spread from the head-on collisions. In this paper we discuss the results of beam simulations with the electron lens in the Relativistic Heavy Ion Collider (RHIC). We study the effects of the electron beam profile and strength on the betatron tunes, dynamic aperture, frequency diffusion and beam lifetime.

 
WE6PFP045 Beam Dynamics for Very High Beam-Beam Parameter in an e+e- Collider collider, cavity, luminosity, simulation 2592
 
  • K. Ohmi, K. Oide
    KEK, Ibaraki
 
 

Beam-beam tune shift parameter characterizes the strength of the nonlinear interaction due to the beam-beam collision. The tune shift has been measured in many e+e- colliders and has been an indicator for the collider performance. The record for the tune shift is known as 0.07-0.1 depending on the parameter of the collider, especially the radiation damping rate. We discuss the fundamental limit of the tune shift can be very high (>0.2) depending on the choice of collider parameter, which concerns operating point near the half integer tune, head-on collision and travel focus.

 
WE6PFP046 Variations in Beam Phase and Related Issues Observed in KEKB cavity, beam-loading, electron, positron 2595
 
  • T. Ieiri, K. Akai, M. Tawada, M. Tobiyama
    KEK, Ibaraki
 
 

KEKB is a multi-bunch, high-current electron-positron collider. Newly installed crab cavities realized an effective head-on collision, while maintaining finite-angle crossing orbits. Bunches form a single train followed by a beam abort gap. We observed a beam phase advancing along a train due to transient beam loading. Since there is a difference in the beam phase between the two beams, a longitudinal displacement of the collision vertex is expected under the crabbing collision. Estimated variations agree with those detected by the Belle*. A displacement in the horizontal beam position was observed in correspondence with the variations in the beam phase. We found that the horizontal displacement was caused by a transverse kick of the crab cavities to phase-shifted bunches. Moreover, a rapid phase advancing was observed at the leading part in a train in the LER. We suspect that some longitudinal wakes with low Q values in accelerator components might contribute to the rapid change in the beam phase.


*H. Kichimi et al., to be published.

 
WE6PFP061 Beta* and Beta-Waist Measurement and Control at RHIC quadrupole, optics, controls, luminosity 2640
 
  • V. Ptitsyn, A.J. Della Penna, V. Litvinenko, N. Malitsky, T. Satogata
    BNL, Upton, Long Island, New York
 
 

Funding: Work performed under US DOE contract DE-AC02-98CH1-886


During the course of last RHIC runs the beta-functions at the collision points (beta*) have been reduced gradually to 0.7m. In order to maximize the collision luminosity and ensure the agreement of the actual machine optics with the design one, more precise measurements and control of beta* value and beta* waist location became necessary. The paper presents the results of the implementation of the technique applied in last two RHIC runs. The technique is based on well-known relation between the tune shift and the beta function and involves precise betatron tune measurements using BBQ system as well as specially developed knobs for beta* and beta* waist location control.

 
WE6PFP093 Reverse Emittance Exchange for Muon Colliders emittance, resonance, collider, simulation 2721
 
  • V. Ivanov, A. Afanasev, C.M. Ankenbrandt, R.P. Johnson, G.M. Wang
    Muons, Inc, Batavia
  • S.A. Bogacz, Y.S. Derbenev
    JLAB, Newport News, Virginia
 
 

Funding: Supported in part by USDOE STTR Grant DE-FG02-05ER86253


Muon collider luminosity depends on the number of muons in the storage ring and on the transverse size of the beams in collision. Six-dimensional cooling schemes now being developed will reduce the longitudinal emittance of a muon beam so that smaller high frequency RF cavities can be used for later stages of cooling and for acceleration. However, the bunch length at collision energy is then shorter than needed to match the interaction region beta function. New ideas to shrink transverse beam dimensions by lengthening each bunch (reverse emittance exchange and bunch coalescing) will help achieve high luminosity in muon colliders with fewer muons. Analytic expressions for the reverse emittance exchange mechanism are derived, including a new resonant method of beam focusing. Correction schemes for the aberrations were explored, and a lattice to implement them was proposed. To mitigate space charge detuning and wake field effects, a scheme was invented to coalesce smaller intensity bunches after they are cooled and accelerated to high energy into intense bunches suitable for a muon collider.

 
WE6PFP104 CesrTA Low-Emittance Tuning – First Results coupling, emittance, quadrupole, lattice 2754
 
  • J.P. Shanks, M.G. Billing, S.S. Chapman, M.J. Forster, S.B. Peck, D. L. Rubin, D. Sagan, J.W. Sexton
    CLASSE, Ithaca, New York
 
 

Funding: Support provided by the US National Science Foundation and the US Department of Energy.


The Cornell Electron Storage Ring has been reconfigured as a test accelerator (CesrTA) for low emittance damping ring R&D for the International Linear Collider (ILC). We are developing low emittance tuning techniques with a goal of 1) achieving a vertical emittance approaching that of the ILC damping rings and 2) Gaining an understanding of the effectiveness of those techniques. We will use gain mapping to characterize beam position monitor (BPM) electrode gains, orbit response analysis to determine BPM button misalignments, betatron phase and coupling measurements to characterize optical errors, and orbit and dispersion measurements to locate sources of vertical dispersion. We are investigating a nondestructive dispersion measurement that depends on exciting a synchrotron oscillation and monitoring the phase and amplitude at each BPM. We have developed the analysis tools necessary to correct magnet and alignment errors. An x-ray beam size monitor is being deployed that will allow us to monitor vertical emittance in real time, allowing for empirical tuning of beam size. We will describe the measurement and correction techniques and show data demonstrating their efficacy.

 
WE6RFP020 Conditions on the Grazing Function g for Efficient Collimation collimation, synchrotron, optics, proton 2826
 
  • V.P. Previtali
    CERN, Geneva
  • S. Peggs
    BNL, Upton, Long Island, New York
  • V.P. Previtali
    EPFL, Lausanne
 
 

The grazing function g is introduced – a synchrobetatron optical quantity that parametrizes the rate of change of total angle with respect to synchrotron amplitude for particles grazing a collimator or aperture. The grazing function is particularly important for crystal collimators, which have limited acceptance angles. The implications for RHIC, SPS, Tevatron and LHC crystal implementations are discussed. An analytic approximation is derived for the maximum value of g in a matched FODO cell, and is shown to be in good agreement with a realistic numerical example. The grazing function scales linearly with FODO cell bend angle, but to is independent of FODO cell length.

 
WE6RFP022 Simulations of Crystal Collimation for the LHC collimation, simulation, insertion, alignment 2832
 
  • V.P. Previtali, R.W. Assmann, S. Redaelli
    CERN, Geneva
  • V.P. Previtali
    EPFL, Lausanne
  • I.A. Yazynin
    IHEP Protvino, Protvino, Moscow Region
 
 

Bent crystals are promised to provide a path towards significant improvement of cleaning efficiency for high power collimation systems. In this paper a possible implementation of a crystal-enhanced collimation system is evaluated for the LHC. Simulation studies were performed with the same state-of the art tracking codes as used for the design of the conventional LHC collimation system. The numerical models are described and predictions for the local and global cleaning efficiency with a crystal-based LHC collimation system are presented. Open issues and further work towards a crystal collimation design for the LHC are discussed.

 
WE6RFP026 Performance Evaluation of the CLIC Baseline Collimation System collimation, wakefield, luminosity, linac 2844
 
  • J. Resta-López
    JAI, Oxford
 
 

We review the current status of the collimation system of the Compact Linear Collider (CLIC). New calculations are done to study the survivability of the CLIC energy spoiler in case of impact of a full bunch train considering the most recent beam parameters. The impact of the collimator wakefields on the luminosity is also studied using the updated collimator apertures, and we evaluate the beam position jitter tolerance that is required to preserve the nominal luminosity. Moreover, assuming the new collimation depths, we evaluate the collimation efficiency.

 
WE6RFP079 Length Scaling of the Electron Energy Gain in the Self-Guided Laser Wakefield Regime Using a 150 TW Ultra-Short Pulse Laser Beam laser, electron, wakefield, plasma 2982
 
  • D.H. Froula, J. Bonlie, L. Divol, S.H. Glenzer, P. Michel, J. Palastro, D. Price, J.E. Ralph, J.S. Ross, C. Siders
    LLNL, Livermore, California
  • C.E. Clayton, C. Joshi, K.A. Marsh, A.E. Pak
    UCLA, Los Angeles, California
  • B.B. Pollock, G.R. Tynan
    UCSD, La Jolla, California
 
 

Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and DE-FG03-92ER40727, and LDRD 06-ERD-056


Recent laser wakefield acceleration experiments at the Jupiter Laser Facility, Lawrence Livermore National Laboratory, will be discussed where the Callisto Laser has been upgraded and has demonstrated 60 fs, 10 J laser pulses. This 150 TW facility is providing the foundation to develop a GeV electron beam and associated betatron x-ray source for use on the petawatt high-repetition rate laser facility currently under development at LLNL. Initial self-guided experiments have produced high energy monoenergetic electrons while experiments using a multi-centimeter long magnetically controlled optical plasma waveguide are investigated. Measurements of the electron energy gain and electron trapping threshold using 150 TW laser pulses will be presented.

 
TH2PBC02 Nonlinear Dynamics Studies in the Fermilab Tevatron Using an AC Dipole dipole, sextupole, octupole, synchrotron 3073
 
  • R. Miyamoto
    BNL, Upton, Long Island, New York
  • A. Jansson, M.J. Syphers
    Fermilab, Batavia
  • S.E. Kopp
    The University of Texas at Austin, Austin, Texas
 
 

An AC dipole magnet produces a sinusoidally oscillating dipole field with frequency close to betatron frequency and excites large sustained oscillations of beam particles circulating in a synchrotron. Observation of such oscillations with beam-position-monitors allows direct measurements of a synchrotron's nonlinear parameters. This paper presents experimental studies to measure effects of sextupole and octupole fields, such as tune dependence on amplitude and resonance driving terms, performed in the Fermilab Tevatron using an AC dipole.

 

slides icon

Slides

 
TH5PFP009 Studies on Combined Momentum and Betatron Cleaning in the LHC collimation, radiation, insertion, proton 3205
 
  • R.W. Assmann, G. Bellodi, C. Bracco, V.P. Previtali, S. Redaelli, Th. Weiler
    CERN, Geneva
 
 

Collimation and halo cleaning for the LHC beams are performed separately for betatron and momentum losses, requiring two dedicated insertions for collimation. Betatron cleaning is performed in IR7 while momentum cleaning is performed in IR3. A study has been performed to evaluate the performance reach for a combined betatron and momentum cleaning system in IR3. The results are presented.

 
TH5PFP030 Recent Approach to Crystalline Beam with Laser-Cooling at Ion Storage Ring, S-LSR laser, ion, acceleration, synchrotron 3260
 
  • A. Noda, M. Nakao, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • M. Grieser
    MPI-K, Heidelberg
  • K. Jimbo
    Kyoto IAE, Kyoto
  • I.N. Meshkov, A.V. Smirnov
    JINR, Dubna, Moscow Region
  • K. Noda, T. Shirai
    NIRS, Chiba-shi
  • H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  • S. Shibuya
    AEC, Chiba
 
 

Funding: The present work was supported by Advanced Compact Accelerator Development program by MEXT of Japanese Government. Support from Global COE, The Next Generation of Physics, is also greatly appreciated.


Creation of 3-dimensional crystalline beam by application of laser-cooling for a Mg ion beam with kinetic energy of 40 keV is a major research subject of the ion storage ring, S-LSR, at ICR, Kyoto University*. Based on the success of longitudinal laser cooling in 2007**, an approach to extend the effect of laser cooling to the transverse degree of freedom has been performed. An indication of heat transfer from the horizontal to longitudinal direction has been obtained by synchro-betatron coupling. By application of bunched beam laser cooling at the operation point around (2.07, 1.10), the momentum spread of the cooled ion beam has been observed to have a peak at a synchrotron tune around 0.07 and simultaneously transverse beam size seems to be reduced in this region. An increase of beam brightness in the horizontal profile has also been observed by measuring spontaneous emission of absorbed laser light. In the present paper, strategy to reach the final 3-dimensional crystalline state by application of 3-dimensional laser cooling by careful adjustment of coupling among 3 degrees of freedom is to be presented based upon the recent experimental results.


*A. Noda, M. Ikegami, T. Shirai, New Journal of Physics, 8, 288-307(2006).
**M. Tanabe et al.,Applied Physics Express 1, 028001-1-028001-3 (2008).

 
TH5RFP010 Automating the Tune Measurement in the LNLS Control System controls, synchrotron, pick-up, monitoring 3459
 
  • M.M. Xavier, S.R. Marques, A.F.A.G. Moreira
    LNLS, Campinas
 
 

As part of our efforts to improve beam stability in LNLS light source, we developed a system for automating tune measurements in the storage ring. This system is based on a commercial spectrum analyzer controlled via a GPIB port fed by a difference signal from a stripline pickup. Following a tandem-like approach, the software is divided in two parts: one inside the main operation software in the control system, which sends commands, and another one designed for receiving these commands and to suitably manage the analyzer The system is capable of setting the analyzer for optimal measurements for almost all operating conditions of the machine. This is achieved through feedback algorithms and triggered events. This tool improves machine diagnostics during failure conditions such as undesired magnet changes and is fast enough to enable tune tracking during particular events, such as ID movements and energy ramps.

 
TH5RFP037 On the Continuous Measurement of the LHC Beta-Function - Prototype Studies at the SPS optics, quadrupole, lattice, monitoring 3528
 
  • R.J. Steinhagen, A. Boccardi, E. Calvo Giraldo, M. Gasior, J.L. Gonzalez, O.R. Jones
    CERN, Geneva
 
 

Until now, the continuous monitoring of the LHC lattice has been considered as impractical due to tight constraints on the maximum allowed beam excitations and acquisition time usually required for betatron function measurements. As an further exploitation of the Base-Band-Tune (BBQ) detection principle, already widely used for tune diagnostic, a real-time beta-beat measurement prototype has been successfully tested at the CERN SPS based on the continuous measurement of the cell-to-cell betatron phase advance. Tests show that the phase resolutions is better than a degree corresponding to a peak-to-peak beta-beat resolution of about one percent. Due to the system's high sensitivity it required only micro-metre range excitation, making it compatible with nominal LHC operation. This contribution discusses results, measurement systematics and possible additional exploitation that may be used to improve the nominal LHC performance.

 
TH5RFP075 Tune Measurements in the Los Alamos Proton Storage Ring damping, linac, storage-ring, proton 3618
 
  • R.C. McCrady
    LANL, Los Alamos, New Mexico
 
 

Funding: This work is supported by the United States Department of Energy under contract DE-AC52-06NA25396


Precise measurement of the tunes in the Los Alamos Proton Storage Ring (PSR) is difficult because the beam is normally extracted immediately after accumulation, preventing the use of continuous-wave radio frequency measurements. Presented here is a method that takes advantage of the phase information in the response of the beam to a transverse oscillatory driving voltage. This technique offers much greater precision than using the amplitude spectrum alone.

 
TH6PFP028 Model Independent Analysis with Coupled Beam Motion coupling, dipole, resonance, simulation 3759
 
  • M.G. Billing, M.J. Forster, H.A. Williams
    CLASSE, Ithaca, New York
 
 

This paper describes the results of measurements compared with the analysis of errors for a method of determining accelerator Twiss and coupling parameters from the singular value decomposition of beam position monitor data, taken on a turn-by-turn basis for a storage ring in fully coupled transverse beam coordinates. Using the transversely coupled-coordinate formalism described by Billing et al*, the measurement technique expands on the work of Wang et al**, which describes the SVD of the same data under the assumptions of no transverse coupling of the beam parameters. This particular method of data analysis requires a set of BPM measurements, taken when the beam is resonantly excited in each of its two dipole, betatron normal-modes of oscillation


*M. Billing, et al, to be published in Phys. Rev. S T – Accel Beams
**C. Wang, et al, Phys. Rev. S T – Accel Beams 6, 104001 (2003)

 
TH6PFP030 Post-Linac Collimation System for the European XFEL collimation, optics, linac, sextupole 3763
 
  • V. Balandin, R. Brinkmann, W. Decking, N. Golubeva
    DESY, Hamburg
 
 

The post-linac collimation system should simultaneously fulfil several different functions. In first place, during routine operations, it should remove with high efficiency off-momentum and large amplitude halo particles, which could be lost inside undulator modules and become source of radiation-induced demagnetization of the undulator permanent magnets. The system also must protect the undulator modules and other downstream equipment against mis-steered and off-energy beams in the case of machine failure without being destroyed in the process. From beam dynamics point of view, the collimation section should be able to accept bunches with different energies (up to ± 1.5% from nominal energy) and transport them without deterioration not only of transverse, but also of longitudinal beam parameters. In this article we present the optics solution for the post-linac collimation system which fulfils all listed above requirements.

 
TH6PFP036 Lattice Issues of the CERN PSB with H- Charge Exchange Injection Hardware injection, lattice, quadrupole, linac 3781
 
  • C. Carli, M. Aiba, M. Chanel, B. Goddard, M. Martini, W.J.M. Weterings
    CERN, Geneva
 
 

The motivation for the construction of CERN Linac4 is to improve the performance of the PSB by raising the injection energy and implementing a new H- charge exchange multiturn injection scheme. Strategies to design the H- charge exchange injection hardware and, in particular, to mitigate perturbations of the lattice will be reported and the proposed geometry described.

 
TH6PFP058 Linear Optics Measurement and Correction in the SNS Accumulator coupling, quadrupole, optics, dipole 3838
 
  • Z. Liu
    IUCF, Bloomington, Indiana
  • S.M. Cousineau, J.A. Holmes, M.A. Plum
    ORNL, Oak Ridge, Tennessee
 
 

Funding: Division of Materials Science, U.S. Department of Energy, under contract number DE-AC05-96OR22464 with UT-Battelle Corporation for Oak Ridge National Laboratory


In order to achieve a more robust and optimal performance, the difference between the real machine and its underlying model should be understood and eliminated. Discrepancies between the measuremed and predicted linear optics suggest possible errors of the focusing magnets and diagnostic devices. To find and correct those errors, a widely used method, orbit response matrix (ORM)* approach is applied to the SNS storage ring, which successfully brings the tune deviation from 3% to 0.1%, improves horizontal beta beating from 15% to 3%, and perfectly flattens the orbit. In this article, we discussed the progress and possible future improvements with the SNS ring optics correction.


*J. Safranek, "Experimental determination of storage ring optics using closed orbit response measurements", Nucl. Inst. and Meth. A388, (1997), pg. 27

 
TH6PFP066 The Correction of Linear Lattice Gradient Errors Using an AC Dipole quadrupole, simulation, optics, dipole 3859
 
  • G. Wang, M. Bai, V. Litvinenko, T. Satogata
    BNL, Upton, Long Island, New York
 
 

Funding: Department of Energy


Precise measurements of optics from coherent betatron oscillations driven by ac dipoles have been demonstrated at RHIC and the Tevatron. For RHIC, the observed rms beta-beat is about 10%. Reduction of beta-beating is an essential component of performance optimization at high energy colliders. A scheme of optics correction was developed and tested in the RHIC 2008 run, using ac dipole optics for measurement and a few adjustable trim quadrupoles for correction. In this scheme, we first calculate the phase response matrix from the measured phase advance, and then apply a singular value decomposition (SVD) algorithm to the phase response matrix to find correction quadrupole strengths. We present both simulation and some preliminary experimental results of this correction.

 
TH6PFP079 Study of Integer Betatron Resonance Crossing in Scaling FFAG Accelerator resonance, acceleration, simulation, closed-orbit 3889
 
  • Y. Mori
    KEK, Ibaraki
  • Y. Ishi, Y. Kuriyama, A. Osanai, T. Uesugi
    KURRI, Osaka
 
 

Crossing of integer resonance in scaling FFAG accelerator has been studied experimentally with the injector of 150MeV FFAG complex at Kyoto University Research Reactor Institute (KURRI). The results were analyzed based on harmonic oscillator model and compared with beam tracking simulations.

 
TH6PFP080 Symplectic Expression for Chromaticity optics, coupling, synchrotron, resonance 3892
 
  • Y. Seimiya, H. Koiso, K. Ohmi
    KEK, Ibaraki
 
 

The value calculated by using general-purpose computer code SAD for the accelerator is sometimes different from actual measurements. This is because many kinds of factor cause error, like machine error, so we can’t include such error exactly in SAD. Therefore, on the contrary, we consider the model which includes error by using measurement data and derive Hamiltonian from it.

 
TH6PFP088 Integrable Accelerator Lattices with Periodic and Exponential Invariants lattice, SRF, resonance, damping 3910
 
  • V.V. Danilov
    ORNL, Oak Ridge, Tennessee
 
 

Funding: SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725.


The paper presents a new variety of one-dimensional nonlinear integrable accelerator lattices with periodic and exponential invariants in coordinates and momenta. Extension to two-dimensional transverse motion, based on a recently published approach*, is discussed.


*V. Danilov, “Practical Solutions for Nonlinear Accelerator Lattice with Stable Nearly Regular Motion”, Phys. Rev. ST AB 11, 114001 (2008)

 
TH6PFP094 SPEAR3 Nonlinear Dynamics Measurements kicker, injection, optics, synchrotron 3928
 
  • J.A. Safranek, W.J. Corbett, X. Huang, J.J. Sebek, A. Terebilo
    SLAC, Menlo Park, California
 
 

Funding: Work supported by the US Department of Energy, Office of Basic Energy Sciences.


We present nonlinear dynamics measurements and tracking for the SPEAR3 storage ring. SPEAR3 does not have a vertical pinger magnet, so we have developed a method of measuring (x, y) frequency maps by exciting vertical oscillations using a strip line driven with a swept frequency. When the vertical oscillations reach the desired amplitude, the drive is cut, and an injection kicker excites horizontal oscillations. The subsequent free horizontal and vertical betatron oscillations are digitized turn-by-turn. We have used measured and tracked frequency maps in (x, y) and (x, energy) to characterize and optimize the dynamic aperture, injection and lifetime of the SPEAR3 low emittance optics.

 
TH6PFP096 Analytical Calculation of the Smear for Long-Range Beam-Beam Interactions emittance, simulation, resonance, luminosity 3934
 
  • D. Kaltchev
    TRIUMF, Vancouver
  • W. Herr
    CERN, Geneva
 
 

The Lie-algebraic method is used to develop generalized Courant-Snyder invariant in the presence of an arbitrary number of beam-beam collisions, head-on or long-range, in a storage ring collider. The invariant is obtained by concatenating nonlinear beam-beam maps in the horizontal plane and to first order in the beam-beam parameter. Tracking evidence is presented to illustrate that with LHC parameters the invariant is indeed preserved and can be used to predict the smear of horizontal emittance observed in tracking simulations. We discuss the limits of applicability of this model for realistic LHC collision schemes.

 
TH6REP002 Independent Component Analysis for the Turn by Turn Beam Position Measurement in the TLS synchrotron, diagnostics, septum, injection 3950
 
  • P.C. Chiu, K.T. Hsu, K.H. Hu, C.H. Kuo, C.Y. Wu
    NSRRC, Hsinchu
 
 

After commissioning of new BPM system in the TLS, it would support functionality of turn by turn data which can be applied in independent component analysis (ICA). This data analysis method is a special case of blind source separation to separate multivariable signal and additive noise and shown to be a useful diagnostic tool in acceleration application. In this paper, we use the ICA method to analyze experimental BPM turn by turn data of the TLS storage ring, measure betatron tunes, and identify abnormal BPM signals. Other possible applications have been also further studied continuously.

 
TH6REP032 Fast-Gated Camera Measurements in SPEAR3 optics, injection, diagnostics, kicker 4015
 
  • W.X. Cheng, W.J. Corbett, A.S. Fisher, X. Huang, J.A. Safranek, A. Terebilo
    SLAC, Menlo Park, California
  • W.Y. Mok
    Life Imaging Technology, Palo Alto, California
 
 

Funding: Work sponsored by U.S. Department of Energy Contract DE-AC03-76SF00515 and Office of Basic Energy Sciences, Division of Chemical Sciences.


An intensified, fast-gated CCD camera was recently installed on the visible diagnostic beam line in SPEAR3. The ~2nS electronic gate capability, ability to make multiple-exposure images and to acquire sequences of images provides good diagnostic potential. Furthermore, the addition of a rotating mirror just upstream of the photocathode provides the ability to optically ‘streak’ multiple images across the photocathode. In this paper, we report on several fast-gated camera studies including (1) resonant excitation of vertical bunch motion, (2) imaging of the injected beam with and without emittance-spoiling windows in the upstream transfer line, (3) injection kicker tuning to minimize perturbations to the stored beam and (4) images of short-bunch ‘bursting’ in the low momentum-compaction mode of operation.

 
TH6REP064 Measuring Betatron Tunes with Driven Oscillations damping, radiation, pick-up, storage-ring 4099
 
  • R.A. Bosch
    UW-Madison/SRC, Madison, Wisconsin
 
 

The betatron tunes of an electron storage ring may be measured by driving transverse oscillations with an excitation electrode and measuring the resonant beam response with a pickup electrode. We model the damping of coherent betatron oscillations from the tune spread and radiation damping, finding that the tune signal is proportional to the square root of the product of the betatron functions at the excitation and pickup locations. The signal is independent of the betatron phase advance between the two locations. Our results are applied to the Aladdin 800-MeV electron storage ring.

 
TH6REP065 Commissioning of the Bunch-to-Bunch Feedback System at the Advanced Photon Source lattice, pick-up, feedback, emittance 4102
 
  • C. Yao, N.P. Di Monte, W.E. Norum, V. Sajaev, H. Shang
    ANL, Argonne
 
 

Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


The Advanced Photon Source storage ring has several bunch fill patterns for user operation. In some fill patterns the single-bunch beam charge is as high as 16 mA. We installed a bunch-to-bunch feedback system that aims to overcome high-charge beam instability and reduce the required chromatic correction. Due to the drive strength limitation, we decided to first commission the feedback system in the vertical plane. We present our preliminary results, some of the issues that we have experienced and resolved, and our plan to expand the system to the horizontal plane.

 
TH6REP068 Bunch Cleaning at the Canadian Light Source storage-ring, feedback, kicker, single-bunch 4111
 
  • J.M. Vogt, J.C. Bergstrom, S. Hu
    CLS, Saskatoon, Saskatchewan
  • P.L. Lemut, V. Poucki
    I-Tech, Solkan
 
 

A high-purity single-bunch operating mode, required for time-resolved experiments, has been introduced into the CLS Storage Ring. The newly deployed Transverse Feedback System, which uses the Libera Bunch-by-Bunch system as the feedback processor, has added features that inherently enable bunch cleaning. The bunch purification mechanism is based on a frequency modulated signal that drives the unwanted bunches into betatron oscillations to remove them from the Storage Ring. Bunch purities of 10-6 are achieved, limited only by the leakage rate from adjacent bunches.

 
FR1GRC04 AGS Polarized Proton Operation in Run 2009 resonance, polarization, injection, emittance 4251
 
  • H. Huang, L. A. Ahrens, M. Bai, K.A. Brown, C.J. Gardner, J.W. Glenn, F. Lin, A.U. Luccio, W.W. MacKay, T. Roser, V. Schoefer, S. Tepikian, N. Tsoupas, K. Yip, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York
  • H.M. Spinka, D.G. Underwood
    ANL, Argonne
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


After installation of two partial snakes in the Brookhaven Alternating Gradient Synchrotron (AGS), a polarized proton beam with 1.5*1011 intensity and 65% polarization has been achieved. There are residual polarization losses due to horizontal resonances over the whole energy ramp and some polarization loss due to vertical intrinsic resonances. Many efforts have been put in to reduce the emittances coming into the AGS and to consequently reduce polarization loss. This paper presents the accelerator setup and preliminary results from run-9 operations.

 

slides icon

Slides

 
FR5PFP001 PAMELA: Lattice Design and Performance lattice, alignment, proton, acceleration 4302
 
  • S.L. Sheehy, K.J. Peach, H. Witte, T. Yokoi
    JAI, Oxford
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
 

PAMELA (Particle Accelerator for MEdicaL Applications) is a design for a non-scaling Fixed Field Alternating Gradient accelerator facility for Charged Particle Therapy, using protons and light ions such as carbon to treat certain types of cancer. A lattice has been designed which constrains the variation of betatron tunes through acceleration and thus avoids integer resonance crossing and beam blow-up. This paper outlines the design and performance of this proposed PAMELA lattice.

 
FR5PFP002 Straight Section in Scaling FFAG Accelerator insertion, synchrotron, focusing, beam-transport 4305
 
  • Y. Mori
    KEK, Ibaraki
  • J.-B. Lagrange
    KURRI, Osaka
 
 

Straight section in scaling FFAG accelerator has been explored and scaling law for straight section has been investigated. Under these studies, dispersion suppressed straight section, which could be useful for efficient RF acceleration, can be designed in ordinary scaling FFAG ring accelerator.

 
FR5PFP022 Proton Storage Ring Optics Modeling with ac-Driven Betatron Motion dipole, storage-ring, optics, proton 4356
 
  • Y.T. Yan, A. Chao
    SLAC, Menlo Park, California
  • M. Bai
    BNL, Upton, Long Island, New York
 
 

Funding: US DOE


Unlike an electron storage ring with radiation damping, resonance excitation is unsuitable to a proton storage ring for turn-by-turn betatron orbit data. However, one may consider modified betatron motion driven by ac dipoles oscillating at frequencies near the betatron tunes. With a matrix formulation for adding ac-dipole effects on 2-D coupled one-turn map, we concatenate the ac-dipole effects and the one-turn map to obtain a modified linear map. The ac-dipole effects are equivalent to inserted symplectic linear maps at the ac-dipole locations. If the maps are normalized through decoupling similarity transformation, the decoupled maps for the ac-dipole effects are equivalent to 1-D thin quads inserted at the corresponding locations, the same conclusion for the 1-D driven oscillation*. For optics modeling with MIA technique**, one must make sure that there are, simultaneously, two transverse ac-dipole driven betatron oscillations along with one longitudinal synchrotron oscillation. Once the optics model for the modified betatron motion is obtained, one can then obtain the proton storage ring model by de-concatenating the inserted ac-dipole linear maps.


* R. Miyamoto, S.E. Kopp, A. Jansson, and M.J. Syphers, PRSTAB 11, 084002 (2008).
** Y.T. Yan, ICFA Beam Dynamics Newsletter, No. 42, pp. 71-87 ( 2007), Y. Cai, W. Chou, Eds.

 
FR5PFP029 Storage Ring Beam Dynamics Modeling with Limited Instrumentation quadrupole, storage-ring, lattice, emittance 4369
 
  • C. Kwankasem, S. Chunjarean
    SLRI, Nakhon Ratchasima
 
 

For the SIAM Photon Source, we propose to establish a storage ring model based on quadrupole fitting of the measured betatron functions. By fitting of quadrupole field strength parameters to measured values of the betatron function, a series of problems at the SIAM Photon Source could be determined. For example, the problem of turn-to turn electrical coil shorts was detected and solved by replacing the new quadrupole coils. Subsequently, we could identify a quadrupole calibration error due to conflicting information on the number of turns per coil. Other causes regarding the beam dynamics model such as high field saturation effects, power supply calibration error, and proximity to nearby magnets have been taken into account to establish accurate quadrupole calibration factors. The establishment of an accurate model is essential for beam dynamics predictions, closed orbit correction, response matrix determination for LOCO, low emittance operation, and optics correction for high filed insertion devices.

 
FR5PFP064 Analysis of Decoherence Signals at the SLS Storage Ring storage-ring, synchrotron, closed-orbit, emittance 4458
 
  • K. Manukyan
    YSU, Yerevan
  • G.A. Amatuni, A. Sargsyan, V.M. Tsakanov
    CANDLE, Yerevan
  • M. Böge, A. Streun
    PSI, Villigen
 
 

An online measurement of the beam energy spread is based on the analysis of the decoherence/recoherence signals obtained from the beam position monitors after a single turn beam excitation by a pinger magnet. Furthermore the analysis allows calibration of the model in terms of higher order chromaticities and amplitude dependant tune shifts. An analytical model including 1st and 2nd order chromaticities and amplitude dependant tune shift will be presented.

 
FR5RFP036 Longitudinal Space Charge Effects near Transition space-charge, optics, impedance, vacuum 4610
 
  • E. Pozdeyev
    BNL, Upton, Long Island, New York
  • F. Marti, R.C. York
    NSCL, East Lansing, Michigan
  • J.A. Rodriguez
    CERN, Geneva
 
 

Studies of space charge effects in the Small Isochronous Ring (SIR) at Michigan State University revealed a fast longitudinal instability at and below the transition that could not be explained by the conventional negative mass instability. The observed beam behavior can be explained by the effect of the radial component of the coherent space charge force on the longitudinal motion. The transverse coherent space charge force effectively modifies the slip factor shifting the isochronous point and enhancing the negative mass instability. This paper presents results of numerical and experimental studies of the longitudinal beam dynamics in SIR and proposes an analytical model explaining the results.

 
FR5RFP045 Wake and Higher Order Mode Computations for CMS Experimental Chamber at the LHC vacuum, HOM, wakefield, higher-order-mode 4634
 
  • R. Wanzenberg
    DESY, Hamburg
  • E. Métral
    CERN, Geneva
 
 

Wakefields and trapped Higher Order Modes in the CMS experimental chamber at the LHC are investigated using a geometrical model which closely reflects the presently installed vacuum chamber. The basic rf-parameters of the higher order modes (HOMs) including the frequency, loss parameter,and the Q-value are provided. To cover also transient effects the short range wakefields and the total loss parameter has been calculated, too. Most numerical calculations are performed with the computer code MAFIA. The calculations of the Modes is complemented with an analysis of the multi-bunch instabilities due to the longitudinal and dipole modes in the CMS vacuum chamber.

 
FR5RFP046 Studies of Collective Effects in SOLEIL and Diamond Using the Multiparticle Tracking Codes SBTRACK and MBTRACK impedance, single-bunch, wakefield, coupling 4637
 
  • R. Nagaoka
    SOLEIL, Gif-sur-Yvette
  • R. Bartolini, J. Rowland
    Diamond, Oxfordshire
 
 

Good understanding of instabilities is of great importance in light source rings that provide high current beams. The inherently large machine impedance, which often evolves with continuous changes of insertion devices, enhances collective effects that need to be well controlled to assure the machine performance. The problem is usually not straightforward, as one must quantify short and long range wakes that excite single and multi bunch instabilities, the coupling between instabilities and different planes, as well as Landau effects in arbitrary filling modes. The paper presents the study made on DIAMOND and SOLEIL using the multiparticle tracking codes sbtrack and mbtrack. While sbtrack performs a 6-dimensional single bunch tracking, mbtrack does its direct extension to multibunches. The most recent code development includes a MATLAB version and a high precision Fourier analysis of collective modes. The study emphasises the use of realistic impedance models, either empirically or numerically constructed, and aims to elucidate the relative importance of different physical effects by closely comparing with experimental observations.

 
FR5RFP097 Four Regimes of the IFR Ion Hose Instability ion, electron, damping, synchrotron 4767
 
  • R.A. Bosch
    UW-Madison/SRC, Madison, Wisconsin
 
 

An electron beam focused by an ion channel without a magnetic field, in the so-called ion focus regime (IFR), may be disrupted by the transverse ion hose instability. We describe the growth in four regimes.

 
FR5REP007 Final Implementation and Performance of the LHC Collimator Control System controls, collimation, insertion, injection 4788
 
  • S. Redaelli, R.W. Assmann, R. Losito, A. Masi
    CERN, Geneva
 
 

The 2008 collimation system of the CERN Large Hadron Collider (LHC) included 80 movable collimators for a total of 316 degrees of freedom. Before beam operation, the final controls implementation was deployed and commissioned. The control system enabled remote control and appropriate diagnostics of the relevant parameters. The collimator motion is driven with time-functions, synchronized with other accelerator systems, which allows controlling the collimator jaw positions with a micrometer accuracy during all machine phases. The machine protection functionality of the system, which also relies on function-based tolerance windows, was also fully validated. The collimator control challenges are reviewed and the final system architecture is presented. The results of the remote system commissioning and the operational experience are discussed. The system tests performed for the 2009 beam operation are also reviewed.

 
FR5REP112 Analysis of Orbits in Combined Function Magnets focusing, TRIUMF, closed-orbit, lattice 5038
 
  • S.R. Koscielniak
    TRIUMF, Vancouver
 
 

Fixed-Field Alternating-Gradient (FFAG) accelerators span a large range of momenta and have markedly different reference orbits for each momemtum. In the non-scaling (NS) versions proposed for rapid acceleration, the orbits are geometrically dissimilar. In particular, none of the orbits within bending magnets are arcs of circles and this complicates tune calculation. One approach to NS-FFAG design is to employ alternating combined-function magnets. Second generation NS-FFAGs designs attempt to mitigate the variation of betatron tunes; and careful calculation of orbits and tunes is essential. Starting from an analytic magnetic potential for the combined-function magnet, we elucidate expressions for orbit calculation which are second order in the cyclotron motion and arbitrary order in the momentum (no expansion is used).