Paper | Title | Other Keywords | Page |
---|---|---|---|
MO4PBI01 | Current Status and Future Perspectives of Energy Recovery Linacs | electron, cavity, laser, emittance | 97 |
|
|||
Energy Recovery Linacs (ERL) have been successfully operated in three high-power FEL facilities, Jefferson Laboratory (JLAB) IR FEL Upgrade, Japan Atomic Energy Agency (JAEA) FEL and Budker Institute of Nuclear Physics (BINP) THz FEL. The ERLs are now considered a promising candidate for uses as high-power FELs, synchrotron radiation sources, electron cooling devices, electron-ion colliders and Compton X/gamma-ray sources. All these applications are based on the excellent feature of the ERL that is simultaneous attainment of multiple beam parameters: small emittance, short bunch duration and high-average current. In order to overcome technological challenges and realize the above future ERL applications, several R&D efforts have been launched in the world. In this paper, we overview the current status of these R&D programs and envision the future of ERLs. |
|||
|
|||
MO4PBC04 | The Wisconsin Free Electron Laser Initiative | laser, electron, FEL, cathode | 109 |
|
|||
Funding: Work supported by the University of Wisconsin - Madison. SRC is supported by the U.S. National Science Foundation under Award No. DMR-0537588. The University of Wisconsin-Madison/Synchrotron Radiation Center and MIT are developing a design for a seeded VUV/soft X-ray Free Electron Laser serving multiple simultaneous users. The present design uses an L-band CW superconducting 2.2 GeV electron linac to deliver 200 pC bunches to multiple FELs operating at repetition rates from kHz to MHz. The FEL output will be fully coherent both longitudinally and transversely, with tunable pulse energy, cover the 5-900 eV photon range, and have variable polarization. We have proposed a program of R&D to address the most critical aspects of the project. The five components of the R&D program are:
|
|||
|
|||
MO4GRI03 | Laser Systems for Next Generation Light Sources | laser, FEL, cathode, optics | 122 |
|
|||
Funding: The work was supported in part by the Italian Ministry of University and Research under grant FIRB-RBAP045JF2 Particle accelerator and laser technologies are effectively combining with each other in the development of next generation light sources, with the latter being one of the key factors determining the ultimate performance of these machines. VUV and X-FEL facilities take advantage of laser technology at many strategic points: creation of the electron bunch (photo-injector laser), acceleration (laser heater), undulators (seed laser), beam diagnostics (electro-optic sampling lasers), user experiments (pump-probe lasers). The talk will discuss the main requirements and challenges (photoinjector and seed lasers in particular) for the laser systems and will illustrate proposed solutions and obtained results. Recent laser achievements that are likely to have impact on important developments like high average power injectors, different guns,tunable short wavelength FEL seeding will also be addressed. |
|||
|
|||
MO6RFP034 | The EBIT Charge State Booster for Exotic Beam Reacceleration at MSU | electron, ion, cathode, simulation | 429 |
|
|||
The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is implementing a system to reaccelerate rare isotope beams from projectile fragmentation to energies of about 3 MeV/u. The reacceleration of stopped radioactive beams from projectile fragmentation at the NSCL/MSU makes use of charge state breeding in an Electron Beam Ion Trap (EBIT) to provide a compact and cost efficient system layout of MSU’s ReA3. The MSU EBIT breeder device will provide a high electron beam current density of about 104 A/cm2 making it well suited to rapidly increase the charge state of short-lived isotopes within tens of milliseconds or less. In addition, the breeder is optimized to provide a high storage capacity, a high beam acceptance and uses a continuous injection and beam accumulation scheme explicitly, which makes it unique. To match the beam of singly charged rare isotope ions into the acceptance of the EBIT and to analyze and purify the EBIT beams, a sophisticated beam line and diagnostic system is required. The present paper will present an overview and the status of the ReA3 EBIT. |
|||
MO6RFP037 | Development of the SNS External Antenna H- Ion Source | plasma, ion, ion-source, cathode | 438 |
|
|||
Funding: The work at Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, was performed under contract DE-AC05-00OR2275 for the US Department of Energy. The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure that we will meet our operational commitments as well as provide for future facility upgrades with high reliability, we have developed an RF-driven, H- ion source based on a ceramic aluminum nitride (AlN) plasma chamber*. This source is expected to enter service as the SNS neutron production source starting in 2009. This report details the design of the production source which features an AlN plasma chamber, 2-layer external antenna, cooled-multicusp magnet array, Cs2CrO4 cesium system and a Molybdenum plasma ignition gun. Performance of the production source both on the SNS accelerator and SNS test stand is reported. The source has also been designed to accommodate an elemental Cs system with an external reservoir which has demonstrated unanalyzed beam currents up to ~100mA (60Hz, 1ms) on the SNS ion source test stand. *R.F. Welton, et al., “Next Generation Ion Sources for the SNS”, Proceedings of the 1st Conference on Negative Ion Beams and Sources, Aix-en-Provence, France, 2008 |
|||
MO6RFP043 | Design of an SRF Gun for Polarized Electron Beams | cathode, SRF, electron, vacuum | 454 |
|
|||
Funding: AES is funded under DOE SBIR contract #DE-FG02-06ER84450. BNL work is performed under DOE contract #DE-AC02-98CH10886. The use of an RF electron gun with a magnetized cathode in place of a DC gun for ILC may reduce the requirements for emittance damping rings. Maintaining adequate lifetime of the necessary cathode material requires vacuum levels in the 10-11 torr range. While vacuum levels around the 10-9 torr range are common in a normal conducting RF gun, the cryogenic pumping of the cavity walls of a superconducting RF (SRF) gun may maintain vacuum in the range needed for GaAs cathode longevity. Advanced Energy Systems, Inc. is collaborating with Brookhaven National Laboratory to investigate the generation of polarized electron beams using a SRF photocathode gun. The team is developing an experiment to study the quantum lifetime of a GaAs cathode in a SRF cavity and investigate long term cavity performance while integrated with a cesiated GaAs cathode*. In addition to the experimental investigation, a design is being developed that is compatible with the production of high aspect ratio polarized electron beams. The mechanical and physics aspects of this design will be discussed. *J. Kewisch, et. al., Presentation at PAC09. |
|||
MO6RFP044 | An Optimization of a DC Injector with Merger for the Energy Recovery Linac Upgrade to the APS | emittance, simulation, laser, cavity | 455 |
|
|||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. An energy recovery linac (ERL) is a potential candidate for an Advanced Photon Source (APS) upgrade at Argonne National Laboratory. A high-DC-voltage photocathode-gun-based electron injector* was previously investigated to meet the ultra-low emittance requirement. Recently the modeling was extended to include a merger using the fully three-dimensional tracking simulation code IMPACT-T. A multiobjective numerical optimization was performed with the goal of delivering a 10-MeV, 19-pC bunch with a normalized transverse emittance less than 0.1 μm at the entrance of the linac. In this paper we show the optimum performance obtained. *Y.-E. Sun et al., ”Optimization of a DC Injector for an Energy Recovery Linac Upgrade to the Advanced Photon Source”, Proc. of LINAC 2008, TUP100, to be published on http://www.jacow.org. |
|||
MO6RFP046 | Optimized Design of an Ultra-Low Emittance Injector for Future X-Ray FEL Oscillator | emittance, cavity, electron, linac | 461 |
|
|||
Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. The concept of an ultra-low transverse emittance injector operating in CW mode for an XFELO* was discussed at LINAC-08**. Here we will report the design optimization of the injector, which includes a 100 MHz RF-gun with thermionic cathode, an energy filter to produce short bunches (~0.5 nsec), a velocity bunching section, higher harmonic cavities to minimize longitudinal emittance, two bunch compressors and accelerating sections operating at 400 MHz and 1300 MHz to obtain 540 MeV electrons. The proposed design is capable of producing 40 pC bunches with 0.5 psec rms time width and 0.7 MeV rms energy spread. Most significantly, the transverse rms emittance is kept below 0.11 π μm. The longitudinal emittance and bunch time width can be substantially reduced for low-charge bunches of several pC. *K.-J. Kim, Y. Shvyd’ko, and S. Reiche, Phys. Rev. Lett., 100 244802 (2008). |
|||
MO6RFP048 | Simulation Study of a Normal-Conducting RF Photoinjector for ERL X-Ray Sources | cavity, cathode, simulation, emittance | 467 |
|
|||
Funding: This work was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Low-frequency normal-conducting photoinjectors have the potential to generate CW beam due to low frequency and relatively low field. They can provide a much higher accelerating field at the cathode than envisioned DC injectors but without the complexity involved in superconducting rf injectors. Low frequency allows a relatively long bunch near the cathode to reduce space-charge effects, which is detrimental for generating demandingly high-brightness beams. However, low frequency means higher bunch charge for a given average current, counteracting the potential benefits of low-frequency rf injectors. Furthermore, significant bunch length reduction in the injectors is often needed, which may degrade transverse brightness. To explore the potential of a normal-conducting injector for the envisioned ERL upgrade of the Advanced Photon Source, we made a preliminary design and searched for a suitable solution using genetic optimization. Simulation results are presented. |
|||
MO6RFP049 | An Experiment to Test the Viability of a Gallium-Arsenide Cathode in a SRF Electron Gun | cathode, electron, vacuum, ion | 470 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Gallium arsenide cathodes are used in electron guns for the production of polarized electrons. In order to have a sufficient quantum efficiency lifetime of the cathode the vacuum in the gun must be 10-11 torr or better, so that the cathode is not destroyed by ion back bombardment. All successful polarized guns are DC guns, because such vacuum levels can not be obtained in normal conducting RF guns. A superconductive RF gun may provide a sufficient vacuum level due to cryo-pumping of the cavity walls. We report on the progress of our experiment to test such a gun. |
|||
MO6RFP050 | Ion Bombardment in RF Photoguns | ion, cathode, SRF, electron | 473 |
|
|||
A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the RF field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment. |
|||
MO6RFP051 | High-Brightness Electron Beam Studies at the NSLS SDL | emittance, electron, cathode, laser | 476 |
|
|||
There is a growing interest in optimizing the electron beam for an X-ray Free Electron Laser (FEL) in the low charge (10 to 200 pC) and femto-seconds regimes. We have experimentally demonstrated sub-picosecond high-brightness electron beam for a 40 pC charge with ballistic bunch compression and a reduced laser spot size*. Simulation studies showed the feasibility of generating 10 femto-seconds kilo-ampere electron beam with a 20 pC charge**. This paper reports the progress of experimental demonstration of a femto-seconds kilo-ampere electron beam at the NSLS Source Development Lab (SDL). The femto-seconds kilo-ampere electron beam will be used to drive a self-amplified spontaneous emission (SASE) FEL, and SASE FEL spectra and pulse length will be used to measure the electron beam bunch length. The transverse properties of the electron beam will also be experimentally characterized. *X.J. Wang, et al, Phys. Rev. E , 54, No.4, R3121 -3124 (1996). |
|||
MO6RFP053 | A Continuous Wave, Normal Conducting, L-Band PWT Photoelectron Gun | cavity, vacuum, simulation, cathode | 479 |
|
|||
A Gallium Arsenide (GaAs) photocathode RF electron gun is useful if high polarization (>85%) and low emittance are required as, for example, in the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility. DULY Research is developing a normal-conducting, L-band photoelectron gun in an ultra high vacuum accelerating structure called the Plane-Wave-Transformer (PWT) integrated with an activated, strained-lattice GaAs photocathode, as a continuous wave polarized electron source. We compare two designs (1-cell and ½ cell) of an L-Band PWT photoelectron gun in this paper. This RF gun will simplify the CEBAF photoinjector design by replacing the direct current (DC) gun, buncher cavities and the capture section. The new compact design provides a stiffer beam that is less subject to space charge blowup. In addition, a higher field gradient at the photocathode would mitigate electron and ion backbombardment problems. Cooling for a CW PWT gun is challenging but manageable. |
|||
MO6RFP055 | Investigations on the Increased Lifetime of Photocathodes at FLASH and PITZ | cathode, laser, electron, vacuum | 485 |
|
|||
Caesium telluride photocathodes are used as laser driven electron sources at FLASH and PITZ. FLASH is operated as user facility as well as for accelerator related studies and therefore has a constant and moderate usage of the cathodes. In contrary, PITZ is an injector R&D facility with a stronger usage of cathodes including gradients in the RF-gun of up to 60 MV/m. In the past, one concern of operating RF-guns with Cs2Te cathodes was the degradation of the quantum efficiency in a few weeks at FLASH and a couple of days at PITZ. Improved vacuum conditions and removing contaminants in both accelerators yielded an increased life time of several months. In this contribution we report on routinely performed QE measurements, investigations on the homogeneity of the electron emission, and dark current issues for both facilities. |
|||
MO6RFP057 | Recent Electron Beam Measurements at PITZ with a New Photocathode Laser System | laser, emittance, electron, cathode | 491 |
|
|||
The Photo Injector Test facility at DESY, Zeuthen site, (PITZ*) aims to develop and optimize electron sources for frontiers linac based FELs such as FLASH and the European XFEL. A new laser system has been commissioned at PITZ in autumn 2008. It is capable to deliver laser pulses with challenging temporal shape: a flat-top profile with ~20 ps FWHM and rise and fall times of ≤2 ps. This laser system, being a significant step towards the European XFEL photo injector specifications, has been used in a 1.6-cell L-band rf gun with ~60MV/m electric field at the cathode to produce high brightness electron beams. A major part of the PITZ measurement program is the optimizing of the transverse phase space. Recent electron beam measurements at PITZ will be presented. *for the PITZ team |
|||
MO6RFP058 | Design of an Ultrafast Electron Diffraction System with an L-band Photocathode Gun | electron, cathode, laser, solenoid | 494 |
|
|||
To investigate ultrafast dynamics of physical or chemical systems, ultrashort X-rays or electron beams may be used. Compared to X-rays, electron beams are less destructive to material and the scattering cross section is larger, however it is difficult to decrease the electron beam pulse length due to space charge forces. One way of overcoming this difficulty is by means of a photocathode RF gun, which allows the beam energy to be rapidly increased immediately after the electron emission from the photocathode, minimizing therefore the pulse lengthening due to space charge forces. For time-resolved observation of atomic processes electron beams shorter than 100 fs (fwhm) with small divergence are required. In this paper, a conceptual design of a gun system is proposed with beam parameters optimized for relativistic electron diffraction experiments. |
|||
MO6RFP059 | Design of a Normal Conducting L-Band Photoinjector | cavity, emittance, simulation, cathode | 497 |
|
|||
For the successful operation of an X-ray free electron laser the injector must be robust and able to provide a high quality beam. In this paper we present the design of a normal conducting L-band photoinjector which is based on the successful DESY/PITZ gun, but with improved cavity geometry. The result of beam dynamics simulations predicts that a beam with a normalized transverse emittance of less than 0.7 mm mrad at 1 nC can be produced. With an expected repetition rate of at least 1 kHz this gun meets the requirements of the first stage injector for the UK's New Light Source project. |
|||
MO6RFP060 | Numerical Study of the RF Heating of an L-Band Gun | cavity, cathode, electron, simulation | 500 |
|
|||
To precisely control the electron beam parameters from a photocathode RF gun, the RF field distribution during real RF operation must be known. During RF operation, the RF field induces local RF heating on the cavity surface. This non-uniform temperature distribution may deform the cavity and affect the output beam parameters. Here, we model a copper RF gun cavity and calculate the temperature distribution and the stress over the cavity surface. Then, the beam parameter change caused by the cavity deformation is simulated. |
|||
MO6RFP063 | First Results from Commissioning of the PHIN Photo Injector for CTF3 | laser, cathode, emittance, electron | 509 |
|
|||
Installation of the new photo-injector for the CTF3 drive beam (PHIN) has been completed on a stand-alone test bench. The photo-injector operates with a 2.5 cell RF gun at 3 GHz, using a Cs2Te photocathode illuminated by a UV laser beam. The test bench is equipped with different beam monitoring devices as well as a 90-degree spectrometer. A grid of 200 micrometer wide slits can be inserted for emittance measurements. The laser used to trigger the photo-emission process is a Nd:YLF system consisting of an oscillator and a preamplifier operating at 1.5 GHz and two powerful amplifier stages. The infrared radiation produced is frequency quadrupled in two stages to obtain the UV. A Pockels cell allows adjusting the length of the pulse train between 50 nanoseconds and 50 microseconds. The nominal train length for CTF3 is 1.272 microseconds (1908 bunches). The first electron beam in PHIN was produced in November 2008. In this paper, results concerning the operation of the laser system and measurements performed to characterize the electron beam are presented. |
|||
MO6RFP065 | Simulations of Mode Separated RF Photo Cathode Gun | emittance, laser, linac, cathode | 515 |
|
|||
At Accelerator Test Facility (ATF), we have developed and successfully used RF Photocathode gun as the source of electrons. We have also used a similar gun in the Laser Undulator Compact X-ray source facility (LUCX), KEK (High Energy Accelerator Research Organization) for performing experiments to generate X-rays by inverse Compton scattering. Both the existing guns have mode separation of 4 MHz. We designed a new RF Gun with high mode separation of around 9 MHz and high Q value to achieve a low emittance beam of good quality. We are also modifying the power delivery scheme to the accelerator at LUCX to achieve the acceleration of 200 nC in 100 bunches with low emittance. This will help to increase the intensity of X-rays by the inverse Compton scattering. |
|||
MO6RFP072 | On-Line Diagnostic during Cs2Te Photocathodes Formation | cathode, diagnostics, photon, monitoring | 536 |
|
|||
Funding: This work has partly been supported by the European Community, Contract Number RII3-CT-2004-506008. Since ‘90s our laboratory is in charge of producing Cs2Te photocathodes employed as laser driven electron sources in the high brightness photoinjectors of the FLASH and PITZ facilities. The production recipe has been developed and standardized during years, fulfilling the requests for photocathode operation in the photoinjectors. Nevertheless, the growing process of the film is still not totally understood, mainly respect to the final material properties. In this paper, reflectivity and spectral response measurements, at different wavelengths, measured during the photocathode growth are presented and compared with the corresponding photocurrent behavior. The new information, together with results obtained with standard diagnostic tools, will help to improve the understanding of the growing process, of the compounds formation with different Cs/Te ratio and of the reproducibility of the Cs2Te film structure. |
|||
MO6RFP074 | Design and Fabrication of a 500-kV Photocathode DC Gun for ERL Light Sources | cathode, vacuum, high-voltage, electron | 542 |
|
|||
A 500-kV, 10-mA photocathode DC gun has been designed and is now under fabrication by the collaboration efforts of JAEA, KEK, Hiroshima Univ. and Nagoya Univ. The Cockcroft-Walton generator and the ceramic insulator are installed upright in the SF6 tank. We have adopted a multiple-stacked cylindrical ceramic insulator, because this type of ceramic insulator has shown good stability and robustness at the 200-kV Nagoya polarized gun and the 250-kV JAEA FEL gun. All the vacuum chambers are made of titanium alloy with very low out-gassing. The Cockcroft-Walton generator, the ceramic insulator, the vacuum chambers will be fabricated by April 2009 and a high-voltage test will be started soon later. Up-to-date status of the gun development will be presented in detail. |
|||
MO6RFP075 | Development of a 250-kV Photo-Cathode Electron Gun for the ERL Light Sources at JAEA | emittance, cathode, electron, laser | 545 |
|
|||
A 250-kV, 50-mA electron gun has been developed at JAEA for establishing fundamental technologies to generate and evaluate a ultra-small emittance beam, which is required for future ERLs such as a coherent X-ray source and a high-flux gamma-ray source. The gun has been assembled and the first photo-current was obtained from a cathode of NEA-GaAs. Apparatuses for beam measurements has been installed. We plan to measure the transverse emittance by a double-slit configuration and the temporal profile with a deflecting cavity. |
|||
MO6RFP077 | Status of the LBNL Normal-Conducting CW VHF Photo-Injector | cathode, cavity, emittance, laser | 551 |
|
|||
Funding: This work was supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231 A high-brightness high-repetition rate photo-injector based on a normal conducting 187 MHz RF cavity design capable of CW operation is under construction at the Lawrence Berkeley National Laboratory. A cathode field of ~20 MV/m accelerates electron bunches to 750 keV with peak current, energy spread and transverse emittance suitable for FEL and ERL applications. A vacuum load-lock mechanism is included and a 10 picoTorr range vacuum capability allows most types of photocathodes to operate at a MHz repetition rate with present laser technology. The status of the project is presented. |
|||
MO6RFP079 | Improved DC Gun Insulator | electron, vacuum, high-voltage, synchrotron | 557 |
|
|||
Funding: Supported in part by USDOE Contract No. DE-AC05-84-ER-40150. Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested. |
|||
MO6RFP081 | Status of the Photo-Injector Development at NSRRC | laser, electron, solenoid, emittance | 563 |
|
|||
A high brightness photo-injector for light source research applications is being built at NSRRC. This injector consists of a laser driven RF gun with an emittance compensation solenoid and linac sections that booster the beam energy up to 150 MeV. A 266 nm pico-second UV laser system which generates a 300 uJ laser pulse with pulse which can be varied by a UV stretcher from1 to15 ps have been installed and laser shaping techniques will be developed to reduce the emittance growth. The RF gun is a 1.6 cell cavity operating at pi mode and the solenoid used to compensate the emittance growth due to the space charge effect will be set up in the spring of 2009. Beam dynamics study is performed by PARMELA and simulation results show that a normalized rms transverse emittance of 0.7 mm-mrad with a 10 ps flattop pulse at 1 nC charge can be achieved. Measurements of characteristics of the RF gun and the solenoid will be presented. |
|||
MO6RFP087 | Thermionic Cathode-Grid Assembly Simulations for RF Guns | emittance, cathode, simulation, cavity | 572 |
|
|||
The projected electron RF gun of Novosibirsk Microtron-Recuperator injector employs an industrial thermionic cathode grid assembly with 0.08 mm gap that usually used in metal-ceramic RF tubes. Three-dimensional (3D)computer simulations have been performed that use the mesh refinement capability of the both Microwave Studio and 2D SAM codes to examine the full region of the real cathode grid assembly in static fields in order to illustrate the beam quality that can result from such a gridded structure. These simulations have been found to reproduce the beam current behaviors versus of applied potentials that are observed experimentally. Based on it ASTRA RF beam simulations also predict a complicated time-dependent response to the waveform applied to the grid during the current turn-on, calculation of the dissipated power by electrons at the grid, and particle tracking downstream of the grid into RF gun cavity and farther on. These simulations may be representative in other sources, such as some L-band RF injectors for industrial applications. |
|||
MO6RFP088 | Operating a Tungsten Dispenser Cathode in Photo-Emission Mode | cathode, laser, linac, electron | 575 |
|
|||
Funding: Supported by US DOE under contract DE-AC03-76SF00515. The Stanford Synchrotron Radiation Laboratory operates a thermionic radio-frequency gun as part of its injector for the SPEAR 3 storage ring. In order to generate the high bunch charge required for top-off injection, it may be advantageous to operate the thermionic cathode as a photo-emitter. In this note we report on measurements of the wavelength dependence of the quantum efficiency of a tungsten dispenser cathode in a low-field environment, and on high-power tests of the injector in photoemission mode. |
|||
MO6RFP094 | Commissioning of Na2KSb Photocathode RF Gun in S-Band Linac at the University of Tokyo | cathode, laser, vacuum, electron | 587 |
|
|||
Multi-Alkali photocathode has the good possibility as a electron source which has high quantum efficiency and low workfunction. However the surface of the cathode is sensitive over the electric field of 100[MV/m] in a RFgun, the amount of dark current is not negligible. In order to reduce such a dark current, we consider the valance of the electric field between half-cell and full-cell of BNL-IV RF gun by numerical simulation using GPT code. In this work we will show that high quality electron beam can be transported on the condition that appled electric field in half and full cell is about 50[MV/m] and 150[MV/m] respectively. |
|||
MO6RFP095 | The Megaelectron-Volt Ultrafast Electron Diffraction Experiment at Tsinghua University | electron, laser, simulation, cavity | 590 |
|
|||
Funding: Supported by National Natural Science Foundation of China (No.10735050, No.10875070) and National Basic Research Program of China (973 Program)(No.2007CB815102) Time-resolved MeV ultra-fast electron diffraction (UED) is a promising tool for studying of structural dynamics on the fundamental temporal and spatial scales of atomic motion. To reach the desired temporal and spatial resolutions, precise control and measurement of ultra-short, low emittance electron pulses are required. A MeV UED system based on an S-band photocathode RF gun is built and optimized at Tsinghua University. We present the experiment results here. |
|||
MO6RFP099 | A Single Bunch Electron Gun for the ANKA Injector | emittance, cathode, electron, simulation | 602 |
|
|||
Funding: This work has been supported by the Initiative and Networking Fund of the Helmholtz Association under contract number VH-NG-320. The microtron of the ANKA injector is presently equipped with a diode- type electron gun, which produces long pulses. A new thermionic DC triode-type electron gun has been ordered and foreseen for installation in the ANKA injector. The new gun allows single bunch as well as long pulse operation, thus offering the possibility to study beam properties in single bunch operation. This is particularly of interest for the investigation of the short bunch dynamics in the generation of coherent THz radiation. Furthermore, the new gun will make time resolved measurement possible. Simulations of the gun-to-microtron transport with special emphasis on the emittance evolution e.g. due to space charge have been done. Measurements of the gun performance are presently underway and are summarised in this paper. |
|||
MO6RFP101 | Development of High Brightness Injector at NSRL | emittance, laser, solenoid, cathode | 605 |
|
|||
A photocathode injector system is developing at NSRL. A BNL type S-band photocathode RF gun has been built. The emittance will be compensated by a Solenoid. The driving laser is a high-Q product. It will be reformed into uniform distribution in the transverse distribution, but will not in the longitudinal direction. The whole system will be tested soon. |
|||
MO6RFP102 | Present Status of a Multi-Bunch Electron Beam Linac Based on Cs-Te Photo-Cathode RF-Gun at Waseda University | laser, electron, cathode, cavity | 608 |
|
|||
At Waseda University, we have been developing a high quality electron source based on photo-cathode rf-gun and its application experiments. To produce a high current electron beam, we installed a Cs-Te cathode which has higher quantum efficiency and improved the structure of the rf cavity. By adopting a Cs-Te cathode, it is expected that the production of the higher charged single bunch electron beam with a low emittance can be achieved. Moreover, the generation of high quality multi-bunch electron beam is also expected to be possible due to the high quantum efficiency of Cs-Te. For understanding of a Cs-Te cathode and higher quantum efficiency operation, we have performed the fundamental studies by single bunch beam. On the other hand, we have also developed a multi-pulse UV laser for generating the multi-bunch electron beam. Our laser system is composed by all-solid-state Nd:YLF for the stable operation, and the specification of this laser is expected to generate a 100bunch/train with the bunch charge of 800pC/bunch. In this conference, the experimental results of Cs-Te and new laser system and the recent progress of multi-bunch electron beam generation will be reported. |
|||
TU2GRI01 | Initial Beam Results from the Cornell High-Current ERL Injector Prototype | emittance, laser, space-charge, cavity | 683 |
|
|||
Cornell University has built a high average current electron injector for use with an Energy Recovery Linac. The injector is capable of up to 100 mA average current at 5 MeV (33 mA at 15 MeV) and is expected to produce the ultra low emittances needed for an ERL. This talk will give an overview of the initial performance of this injector and summarize a spectrum of beam physics experiments undertaken to demonstrate low emittance, high average current operation. |
|||
|
|||
TU2GRC02 | Femtosecond Photocathode Electron Gun for Time-Resolved Electron Diffraction | electron, emittance, laser, space-charge | 688 |
|
|||
Ultrafast time-resolved electron diffraction based on a photocathode rf electron gun is being developed in Osaka University to reveal the hidden dynamics of intricate molecular and atomic processes in materials. The photocathode rf gun generates a femtosecond-bunch electron beam by femtosecond laser driving. The transverse emittance, bunch length and energy spread were measured. The growths of the emittance, bunch length and energy spread due to the rf and the space charge effects in the rf gun were investigated by changing the laser injection phase, the laser pulse width and the bunch charge. The demonstration of the electron diffraction measurement will be reported. |
|||
TU4RAI02 | Development of a 10 MW Sheet Beam Klystron for the ILC | cavity, klystron, simulation, cathode | 762 |
|
|||
Funding: Work supported by Department of Energy contract DE-AC02-76SF00515 SLAC is developing a 10 MW, 5 Hz, 1.6 ms, L-band (1.3 GHz) Sheet-Beam Klystron as a less expensive and more compact alternative to the ILC baseline Multiple-Beam Klystron. The Klystron is intended as a plug-compatible device of the same beam current and operating voltage as existing Multiple-Beam Klystrons. At this time, a beam tester has been constructed and currently is in test. The beam tester includes an intercepting cup for making beam quality measurements of the 130 A, 40-to-1 aspect ratio beam. Measurements will be made of the electrostatic beam and of the beam after transporting through a drift tube and magnetic focusing system. General theory of operation, design trade-offs, and manufacturing considerations of both the beam tester and klystron will be discussed. |
|||
|
|||
TU4RAC03 | Modeling and Design of High-Power Inductive Output Tubes | simulation, cavity, electron, cathode | 767 |
|
|||
Funding: Research funded by the Office of Naval Research and Naval Research Laboratory. The accelerator community is making the transition to IOT technology for a number of high-power UHF and L-band applications as a result their inherent benefits. Scientists, funded by the Office of Naval Research and Naval Research Laboratory, are investigating the physics of the beam-wave interaction of the IOT. The time-domain electrostatic PIC code MICHELLE, in conjunction with the Analyst® suite of electromagnetic codes, were used to model the cathode-grid-anode structure that comprise the input cavity. Our investigation has led to the discovery of a delay mechanism responsible for intra-bunch charge formation, as evidenced by IOT X-ray generation with energies significantly higher than the cathode accelerating potential, increasing with RF output power. Time-domain PIC results of this effect will be shown. We will also present simulation results of the large-signal beam wave interaction in the output cavity using the code TESLA. Examples of single beam and multiple-beam IOTs will also be shown. |
|||
|
|||
TU4GRI02 | Megawatt Class Spallation Target Development | target, neutron, proton | 794 |
|
|||
There are three spallation neutron source facilities in the world with the potential of operating in the one megawatt proton beam power range. The SINQ facility at the Paul Scherrer Institut has already operated in this power range for several years with various water-cooled solid targets, and used a liquid metal (lead-bismuth) target for a period of four months in conducting its successful MEGAPIE project in 2006. The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory began operation in 2006 and is approaching the one megawatt level using a liquid mercury target. The Japan Proton Accelerator Research Complex (J-PARC), which also has a mercury target, began beam-on-target operations in 2008 and is on its way to ramping-up its power level to one megawatt over the next few years. This paper will summarize the operating experience and planned improvements for the spallation targets at these megawatt class facilities. |
|||
|
|||
TU5PFP015 | A Compact, Low-Voltage Multi-Beam Klystron for 1300 MHz Cryomodules | klystron, cryomodule, status, site | 842 |
|
|||
We describe the design and construction status of a compact, 830 kW multi-beam klystron (MBK) for driving 1300 MHz cryomodules. The applications for this tube range from ILC and ILC test facilites to Project X. The use of low gun voltage (36 kV) simplifies the modulator and gun socket requirements. A high efficiency, predicted to be > 65%, will allow the klystron to be used in applications requiring low overall site power and high wallplug efficiency. |
|||
TU5PFP035 | Proof-of-Principle Experiment of a Ferroelectric Tuner for a 1.3 GHz Cavity | cavity, impedance, resonance, coupling | 897 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A novel tuner has been developed by the Omega-P company to achieve fast control of the accelerator RF cavity frequency. The tuner is based on the ferroelectric property which has a variable dielectric constant as function of applied voltage. Tests using a Brookhaven National Laboratory (BNL) 1.3 GHz RF cavity have been carried out for a proof-of-principle experiment of the ferroelectric tuner. Two different methods were used to determine the frequency change achieved with the ferroelectric tuner. The first method is based on a S11 measurement at the tuner port to find the reactive impedance change when the voltage is applied. The reactive impedance change then is used to estimate the cavity frequency shift. The second method is a direct S21 measurement of the frequency shift in the cavity with the tuner connected. The estimated frequency change from the reactive impedance measurement due to 5 kV is in the range between 3.2 kHz and 14 kHz, while 9 kHz is the result from the direct measurement. The two methods are in reasonable agreement. The detail description of the experiment and the analysis will be discussed in the paper. |
|||
TU5PFP080 | Design, Construction, System Integration, and Test Results of the 1 MW CW RF System for the E-Gun Cavity in the Energy Recovery Linac at Brookhaven National Laboratory | klystron, cavity, factory, monitoring | 1014 |
|
|||
Funding: DoE Contract No. DE-AC02-98CH10886 Brookhaven’s ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPI, Inc. provides RF power of 1 MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CW. The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut down mode no crowbar circuit is needed. Continental’s transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1 MW system. |
|||
TU5PFP084 | Multi-MW K-Band 7th Harmonic Multiplier for High-Gradient Accelerator R&D | cavity, simulation, electron, coupling | 1026 |
|
|||
Funding: Sponsored in part by US Department of Energy, Office of High Energy Physics. A preliminary design is presented for a two-cavity 7th harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power in K-band using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities, a principal example of which is a TE711 mode cavity running at 19.992 GHz. Design of the harmonic multiplier is described that uses a 250 kV, 20 A injected laminar electron beam. With 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the gun beam optics, beam dynamics in the RF system, and of the magnetic circuit. The theory of an azimuthally distributed coupler for the output cavity is presented, as well as the conceptual design of the entire RF circuit. |
|||
TU5PFP093 | Low Beam Voltage, 10 MW, L-Band Cluster Klystron | cavity, cathode, klystron, simulation | 1051 |
|
|||
Funding: Sponsored in part by US Department of Energy, Office of High Energy Physics. Conceptual design of a multi-beam klystron (MBK) for ILC and Project X application is presented. The chief distinction between the MBK design and existing 10-MW MBK’s is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development of a low-voltage MBK, namely (i) no pulse transformer would be required; (ii) no oil tank would be required for the tube socket; (iii) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters that contain six beams each. The tube has common input and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration for a 10 MW tube would involve a design having four totally independent cavity clusters and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere and because it would be easier to achieve phase and amplitude stability as required in individual SC cavities. |
|||
TU5RFP043 | Design of a 250 MeV, X-Band Photoinjector Linac for a Precision Compton-Scattering Based Gamma-Ray Source | emittance, electron, linac, simulation | 1186 |
|
|||
Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We present a compact, X-band, high-brightness accelerator design suitable for driving a precision gamma-ray source. Future applications of gamma-rays generated by Compton-scattering of laser and relativistic electron beams place stringent demands on the brightness and stability of the incident electron beam. This design identifies the beam parameters required for gamma-ray production, including position, and pointing stability. The design uses an emittance compensated, 11.4 GHz photo-gun and linac to generate 400 pC, 1-2 mm-mrad electron bunches at up to 250 MeV and 120 Hz repetition rate. The effects of jitter in the photo-cathode laser and RF power system are analyzed as well as structure and optic misalignments and wakefields. Finally, strategies for the mitigation of on-axis bremsstrahlung noise are discussed. |
|||
TU5RFP059 | FLASH Upgrade | FEL, electron, radiation, undulator | 1217 |
|
|||
The free-electron laser user facility FLASH at DESY, Germany is the world-wide leading SASE-FEL operating in the VUV and the soft X-ray wavelengths range. At present, FLASH provides fully coherent femtosecond laser radiation from 47 nm down to 6.5 nm and higher harmonics. Late 2009, FLASH will be upgraded with an additional superconducting TESLA type accelerating module boosting its beam energy to 1.2 GeV. This will allow lasing with a wavelength below 5 nm. In addition, a 3rd harmonic accelerating cavity will be installed. It allows to flatten and to a certain extend shape the longitudinal phase space improving the overall performance of the facility. |
|||
TU5RFP081 | Status of the Energy Recovery Linac Project in Japan | cavity, linac, laser, electron | 1278 |
|
|||
Future synchrotron light source project using an energy recovery linac (ERL) is under proposal at the High Energy Accelerator Research Organization (KEK) in collaboration with several Japanese institutes such as the JAEA and the ISSP. We are on the way to develop such key technologies as the super-brilliant DC photo-injector and superconducting cavities that are suitable for both CW and high-current operations. We are also promoting the construction of the Compact ERL for demonstrating such key technologies. We report the latest status of our project, including update results from our photo-injector and from both superconducting cavities for the injector and the main linac, as well as the progress in the design and preparations for constructing the Compact ERL. |
|||
TU5RFP083 | Progress on the Commissioning of ALICE, the Energy Recovery Linac-Based Light Source at Daresbury Laboratory | radiation, cathode, linac, electron | 1281 |
|
|||
ALICE (Accelerators and Lasers in Combined Experiments) is a 35 MeV energy recovery linac based light source. ALICE is being developed as an experimental test-bed for a broad suite of science and technology activities that make use of electron acceleration and ultra-short pulse laser techniques. This paper reports the progress made in accelerator commissioning and includes the results of measurement made on the commissioning beam. The steps taken to prepare the beam for short pulse operation as a driver for a Compton Back Scattered source and in preparation for the commissioning of the free electron laser are reported. |
|||
TU6PFP002 | Design, Construction and Tests of a 10 MeV Linac for Polymer Radiation Processing | linac, electron, radiation, solenoid | 1290 |
|
|||
In china, polymer radiation processing has become one of the most important processing industries. Electron beam accelerator or radioactive source is usually used as radiation processing source. For radiation crosslinking application, physical design, construction and testing of a electron beam facility is introduced because of it’s much higher dose rate and efficiency. Main part of this facility is a 10MeV traveling wave electron linac with constant impedance accelerating structure. It is the first electron beam facility designed for polymer radiation processing by National Synchrotron Radiation Laboratory (NSRL) in China. In the paper, a start to end simulation is finished to optimize electron beam dynamics in the linac. Measurement results of some subassemblies are presented. The linac construction has been finished just now. Testing experiments prove that the facility can work well for radiation crosslinking application. |
|||
TU6PFP018 | Ultrafast Electron Diffraction System at the NSLS SDL | electron, solenoid, simulation, emittance | 1333 |
|
|||
Ultrafast electron diffraction (UED) is a promising technique that allows us to observe a molecular structure transition on a time scale on the order of femtoseconds. The UED has several advantages over the competing technology, X-Ray Free Electron Laser (XFEL) in terms of its compactness, 6 orders of magnitude larger cross section, and less damaging ability to the samples being probed. Present state-of-the-art UED systems utilize subrelativistic electron bunches as the probing beam. With such low energy, however, the number of electrons in the bunch must be significantly decreased for a short bunch length (~100 fs) due to space charge effects. This limits the detection capability of such keV UED devices. To overcome this issue, a UED system using an MeV electron beam has been proposed, and designed at Source Development Laboratory (SDL) in National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). A detailed performance analysis of this system using the particle tracking code, GPT, from the photoinjector cathode to the detector, will be presented, as well as the status of the commissioning of our UED system. |
|||
TU6PFP027 | Improvement of Compact Pico-Second and Nano-Second Pulse Radiolysis Systems at Waseda University | electron, cathode, radiation, laser | 1345 |
|
|||
A pulse radiolysis method is very useful in clarifying primary processes of radiation chemistry. At Waseda University, compact pico-second and nano-second pulse radiolysis systems have been developing. A pico-second system is based on pump-probe method. IR and UV pico-second laser pulses are generated from Nd:YLF mode-locked laser and used for generating of white light continuum as analyzing light and irradiating to photo-cathode RF gun, respectively. Recently, we have installed a new photo-cathode RF gun with Cs-Te cathode which has high quantum efficiency, so we have succeeded in improving optical density and S/N ratio of our pulse radiolysis system. We are now developing a new nano-second system which can get time profile with only one-shot and follow up wider time region than pico-second system. In the past, this system has been used He-Ne laser as analyzing light, but it can measure only 633nm. Instead of He-Ne laser, this system adopts Xe flush lamp which has broad spectrum as analyzing light. As system evaluation experiments, we tried to get time profile of some species. In this conference, present status and future plans of our pulse radiolysis systems will be reported. |
|||
TU6PFP096 | Cold-Cathode Kiloampere Electron Gun with Secondary Emission at Relativistic Voltage | electron, cathode, injection, high-voltage | 1522 |
|
|||
Funding: The research was supported the STCU foundation in frame of the project 1968. Magnetron Injection Gun with voltage up {10}00 kV and current more 1 kA was calculated, designed and manufactured. The gun was tested in nanosecond and microsecond operating modes. The application of nanosecond voltage pulses with amplitude up to 600 kV permitted to obtain the secondary-emission current up to 5 kA. The cathode testing in microsecond mode permitted to obtain beam pulse with amplitude up to 1.2 kA at voltage of 400 kV in magnetic field of 0.3 T. There were obtained beam traces on the copper plate. Traces had the form of rings with diameter of 125 mm and width of 5 mm. The secondary emission nature of the cathode current was established. The identification was held basing on considered features of the exciting and on the maintenance of the secondary emission current. However, there is the probability of the parasitic explosive emission at extremely high voltage values since 800 kV. The gun may be used for charge particle accelerators in injectors and RF power sources. Results of the work and prospects of the secondary emission gun development are discussed. |
|||
TU6RFP046 | Design and Diffractive Modeling on a Single Lens Shaper | laser, alignment, simulation, radiation | 1650 |
|
|||
Funding: DOE Contract DE-AC05-060R23177; China Scholarship Council This paper introduces a single lens laser beam shaper which is capable of redistributing a beam with a Gaussian profile to a super-Gaussian profile. Both geometrical and diffractive optical modelings are performed on a typical single lens shaper that shows significant reduction of destructive effects on the beam uniformity over those with sharp-edges. |
|||
TU6RFP048 | Upgrade of the FRIB Prototype Injector for Liquid Lithium Film Testing | ion, electron, simulation, proton | 1656 |
|
|||
Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. The development of a uniform and stable high velocity, thin liquid lithium film stripper is essential for the Facility for Rare-Isotope Beams (FRIB) Project. The formation of such a film has been demonstrated recently at ANL. Film thickness should be measured, and its temporal and spatial stability under high power ion beam irradiation should be verified. Intense beams of light ions generated by the FRIB prototype injector can be used for this task. The injector consists of an ECR ion source followed by a LEBT. A DC 3.3 mA/75 kV proton beam has been generated at the LEBT output. Proton beam power will be brought to required level by adding the second acceleration tube. A low energy electron beams (LEEB) technique, based on the thickness-dependent scattering of the electrons by the film, has been proposed as a fast-response on-line film thickness monitoring. A LEEB test bench has been built to verify this technique. The transmission of electrons through the carbon foils of different thicknesses was measured and compared with results of CASINO simulations. Agreement between the experimental and numerical results allows quantitative measurements of film thickness using the LEEB. |
|||
TU6RFP064 | Coaxial Coupler for X-Band Photocathode RF Gun | coupling, emittance, simulation, electron | 1693 |
|
|||
Funding: This work is supported by National Natural Science Foundation of China(Project 10735050) and National Basic Research Program of China (973 Program)(Grant No. 2007CB815102). The X-band photocathode RF gun can be utilized to generate electron beams with ultra-low emittance. In this paper, we present the design of a coaxial coupler for the X-band RF gun to avoid the emittance growth caused by field asymmetries. A detailed 3D simulation of the coupler is performed. The microwave circuit analysis is accomplished, and the relationship between the coupling factor and the coaxial coupler size is obtained. This paper likewise presents the beam dynamics parameters of the X-band RF gun with a coaxial coupler. |
|||
TU6RFP079 | A High Voltage, High Rep-Rate, High Duty Factor Stacked Transformer Modulator | electron, proton, damping, cathode | 1733 |
|
|||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. A high voltage modulator has been built and installed at Fermi National Accelerator Laboratory for the purpose of driving the gun anode of the Tevatron Electron Lens (TEL). It produces a defined voltage for each of the 36 (anti)proton bunches. This modulator employs five transformers to produce high voltage at a high repetition rate and high duty factor. It is capable of outputting sustained complex waveforms having peak voltages over 6 kV and average periodic rates up to 450 kHz with voltage transitions occurring at 395 ns intervals. This paper describes key aspects of the hardware design and performance. |
|||
TU6RFP088 | Design of Electron Gun System for the PLS-II Linear Accelerator | electron, cathode, high-voltage, simulation | 1751 |
|
|||
Funding: This work was supported by the MEST (Ministry of Education, Science and Technology) and the POSCO (POhang iron and Steel making COmpany) in Korea. The PLS-II, the major upgrade program of the PLS (Pohang Light Source, a 2.5-GeV 3rd generation light source), is planned at the Pohang Accelerator Laboratory. The PLS 2.5-GeV linear accelerator, being the full-energy injector for the PLS storage ring, should be upgraded to provide the beam energy of 3 GeV. For the PLS-II linac, we are going to establish a dual electron gun system in which two guns will be on the accelerator beamline with a bending magnet enabling immediate switching of guns. The dual gun system is expected to achieve high reliability for the top-up injection to the PLS-II storage ring. Also the gun will be upgraded to provide the beam energy of 200 keV and a pulse high-voltage modulator will be constructed. Fifteen-section PFNs will be connected in series to make final impedance of approximately 17.3 ohm. A new modulator applying the inverter technology will be used to charge the PFN and obtain more stable charging performances. In this article the authours would like to report on the design status of the accelerator beamline and inverter modulator for the dual gun system. |
|||
WE1PBC05 | Development of an Ultra-High Repetition Rate S-Band RF Gun for the SPARX Project | coupling, FEL, quadrupole, dipole | 1815 |
|
|||
We present here the design, including RF modelling, cooling, and thermal stress and frequency detuning, of an S-band RF gun capable of running near 500 Hz, for application to FEL and inverse Compton scattering sources. The RF design philosophy incorporates many elements in common with the LCLS gun, but the approach to managing cooling and mechanical stress diverges significantly. We examine the new proprietary approach of RadiaBeam Technologies for fabricating copper structures with intricate internal cooling geometries. We find that this approach may enable very high repetition rate, well in excess of the nominal project this design is directed for, the SPARX FEL. *C.Limborg et al.,“RF Design of the LCLS Gun”,LCLS Technical Note LCLS-TN-05-3 |
|||
|
|||
WE3GRC04 | 3-Dimensional Beam Profile Monitor Based on a Pulse Storage in an Optical Cavity for Multi-Bunch Electron Beam | cavity, electron, laser, linac | 1925 |
|
|||
Funding: Work supported by a Grant-In-Aid for Creative Scientific Research of JSPS (KAKENHI 17GS0210) and a Grant-In-Aid for JSPS Fellows (19-5789) We have been developing a pulsed-laser storage technique in a super-cavity for compact X-ray sources. The pulsed-laser super-cavity enables to make high peak power and small waist laser at the collision point with the electron beam. Recently, using 357 MHz mode-locked Nd:VAN laser pulses which stacked in a super-cavity scattered off a multi-bunch electron beam, we obtained multi-pulse X-rays through laser-Compton scattering. Detecting an X-ray pulse-by-pulse using a high-speed detector makes it possible to measure the 3-dimensional beam size with bunch-by-bunch scanning the laserwire target position and pulse timing. This technique provides not only the non-destructive beam profile monitoring but also the measuring of bunch length and/or bunch spacing shifting. In our multi-bunch electron linac, the bunch spacing narrowing due to the electron velocity difference in the train at the output of rf-gun cavity was observed. The principle of the 3-dimensional laserwire monitor and the experimental results of multi-bunch electron beam measurements will be presented at the conference. |
|||
|
|||
WE3GRC05 | Time-Dependent Phase-Space Mapping of Space-Charge-Dominated Beams | emittance, space-charge, electron, solenoid | 1928 |
|
|||
Funding: This work is funded by the US Dept. of Energy Offices of High Energy Physics and High Energy Density Physics, and by the US Dept. of Defense Office of Naval Research and Joint Technology Office In this paper we report on a proof of principle experiment for demonstrating the possibility of reconstructing the time resolved-phase-space distribution of a space-charge dominated beam by a tomographic technique which provides us with far more information than a time-sliced emittance. We emphasize that this work describes and demonstrates a new methodology which can be applicable to any beam pulse using imaging methods with the appropriate time resolution for the pulse duration. The combination of a high precision tomographic diagnostic with fast imaging screens and a gated camera are used to produce phase space maps of two beams: one with a parabolic current profile and another with a short perturbation atop a rectangular pulse. The correlations between longitudinal and transverse phase spaces are apparent and their impact on the dynamics is discussed. |
|||
|
|||
WE4PBC04 | An Electron Linac Photo-Fission Driver for the Rare Isotope Program at TRIUMF | linac, TRIUMF, cavity, electron | 1958 |
|
|||
A 0.5 megawatt electron linear accelerator is being designed at TRIUMF in support of its expanding rare isotope program, which targets nuclear structure and astrophysics studies as well as material science. The first stage of the project, a 25 MeV, 5 mA, cw linac matching the isotope production target power-handling capability in the next five-year plan, is planned to be completed in 2013. The injector cryomodule development, which is being fast tracked, is the subject of a scientific collaboration between TRIUMF and the VECC laboratory in Kolkata, India. The paper gives an overview of the accelerator design progress. |
|||
|
|||
WE5PFP012 | RF Deflector for Bunch Length Measurement at Low Energy at PSI | cavity, emittance, FEL, simulation | 2012 |
|
|||
RF deflectors are crucial diagnostic tools for bunch length and slice emittance measurements with sub-picosecond resolution. Their use is essential in commissioning and operation of VUV and X-ray FELs. The 250MeV FEL injector, under construction at PSI, will use two of them. The first one will be installed after the gun at low energy (~7MeV), the second one at the end of the Linac at high energy (250MeV). The first RF deflector consists of a single cell standing wave cavity working on the TM110 deflecting mode, and tuned at 2997.912 MHz (frequency of the linac structures). In this note we report the motivation of this measurement, beam dynamics and beam diagnostics considerations and the RF design and simulations of this cavity. |
|||
WE5PFP013 | Development of Solid Freeform Fabrication (SFF) for the Production of RF Photoinjectors | electron, vacuum, linac, laser | 2015 |
|
|||
Electron beam based additive fabrication techniques have been successfully applied to produce a variety of complex, fully dense, metal structures. These methods, collectively known as Solid Freeform Fabrication (SFF) are now being explored for use in radio frequency (RF) structures. SFF technology may make it possible to design and produce near-netshape copper structures for the next generation of very high duty factor, high gradient RF photoinjectors. The SFF process discussed here, Arcam Electron Beam Melting (EBM), utilizes an electron beam to melt metal powder in a layer-by-layer fashion. The additive nature of the SFF process and its ability to produce fully dense parts are explored for the fabrication of internal cooling passages in RF photoinjectors. Following an initial feasibility study of the SFF process, we have fabricated a copper photocathode, suitable as a drop-in replacement for the UCLA 1.6 cell photoinjector, with internal cooling channels using SFF. Material analysis of the prototype cathode and new designs for a high duty factor photoinjector utilizing SFF technology will be presented. |
|||
WE5PFP102 | The RF Phase Reference Distribution System Concept for the European XFEL | linac, LLRF, cavity, diagnostics | 2255 |
|
|||
One of the most important requirements for the XFEL RF system is to assure a very precise RF field stability within the accelerating cavities. The required amplitude and phase stability equals respectively dA/A <3·10-5, dphi<0.01 deg @ 1.3GHz in the injector and dA/A<10-3, dphi <0.1 deg @1.3GHz in the main linac section of the XFEL facility. Fulfilling such requirements is a very challenging task for the 1.5 km long main linac system and about 3.4 km length of the entire facility. Thousands of electronic and RF devices must be precisely phase synchronized for effective controlling of the RF field parameters. We describe the the proposed architecture of the RF Master Oscillator and the Phase Reference Distribution System for the XFEL. Design choices were based on the experience gained during the commissioning of the FLASH phase reference distribution system and on many laboratory experiments with distribution system components. Proposed system parameter analysis shows that the given requirements for the distributed signal phase stability can be fulfilled easily for the main linac section. Fulfilling the injector requirements may require using optical distribution techniques. |
|||
WE5RFP007 | Generation of Sub-Hundred Femtosecond X-Ray via Head-On Inverse Compton Scattering | electron, laser, photon, linac | 2276 |
|
|||
The feasibility of generating sub-hundred femtosecond X-ray pulses based on inverse Compton scattering of relativistic electron pulses of 50-100 fsec with an 800 nm, 37.5 GW infrared Ti:Sapphire laser has been studied. The feasibility of generating sub-hundred femtosecond X-ray pulses based on head-on inverse Compton scattering (ICS) of relativistic electron pulses with laser has been studied. Relativistic electron pulses of 13.55 fsec can be produced by compressing the energy-chirped beam from a thermionic cathode rf gun with an alpha magnet *. This beam has an intensity of ~ 3.31x108 e- per bunch and is accelerated to 20.5 MeV with an S-band linac structure and is focused to 30 μm for scattering with an 800 nm, 3.75 mJ infrared Ti:Sapphire laser in the laser-beam interaction chamber. With this method, peak flux of back-scattered X-ray photons as high as 2.17x1018 photons/sec is achievable at ~ 1.24 Å wavelength. This femtosecond X-ray source is planned to be used as a tool for studying ultrafast phenomena in nanostructure in the near future. *P. Kung, H.C. Lihn and H. Wiedemann, “Generation and Measurement of 50-fs (rms) Electron Pulses”, Phys. Rev. Lett. Vol.73, p.967-970, August 1994. |
|||
WE5RFP034 | Drive Laser System for the NSRRC Photoinjector | laser, cathode, electron, linac | 2337 |
|
|||
A 266nm ultra-violet laser system has been installed as the drive laser of the NSRRC photoinjector. According to beam dynamic studies for the photoinjector, a 10ps uniform cylindrical beam will be generated at the Cu cathode to reduce emittance growth due to space charge and transverse RF fields in the photoinjector cavity. The main part of this system is diode laser pumped, 798nm regenerative IR amplifier that can provide 85fs pulse at 3.85mJ pulse energy. The conversion of frequency from IR to 266nm UV is achieved by a third harmonic generator. UV output pulse energy exceeds 300uJ. Synchronization between seed laser and the high power microwave system can be better than 1ps. In order to produce a uniform cylindrical beam for emittance reduction in the photoinjector, a refreactive UV beam shape and a pulse stacking temporal beam shape are being implemented. |
|||
WE5RFP035 | Desktop, 20-MW Superradiance FEL at THz Frequencies | electron, FEL, bunching, undulator | 2340 |
|
|||
Funding: The authors gratefully acknowledge funding supports from National Synchrotron Radiation Research Center, National Tsinghua University, and National Science Council. We study the generation of THz electron pulse trains from a 6 MeV photocathode electron gun driven by a beat-wave laser with a variable beat frequency [1]. We numerically inject the electrons into a single-pass FEL undulator. Owing to the prebunched electron pulse train, the quick shoot-up of the FEL power overcomes the space-charge debunching force in the 6 MeV beam. With nominal beam parameters and an initial bunching factor >5%, the FEL can reach 20-MW saturation power at 6 THz in a half meter long undulator. The length of this 20MW THz FEL, from the beginning of the electron gun to the end of the wiggler, is less than a meter. We will report our experimental progress of this work in the conference. [1] Yen-Chieh Huang, “Laser-beat-wave bunched beam for compact superradiance sources,” International Journal of Modern Physics B, Vol. 21 Issue 3/4, p277-286 (2007). |
|||
WE5RFP038 | Improving Beam Stability in the LCLS Linac | feedback, linac, undulator, laser | 2349 |
|
|||
Funding: Work supported by Department of Energy contract DE-AC03-76SF00515. The beam stability for the Linac Coherent Light Source (LCLS) at SLAC is important for good X-Ray operation. Although most of the jitter tolerances are met, there is always room for improvement. Besides the short term pulse-to-pulse jitter, we will also discuss oscillation sources of longer time cycles from seconds (feedbacks), to minutes (cooling systems), and up to the 24 hours caused by the day-night temperature variations. |
|||
WE5RFP052 | Development of Accelerator-Based THz Sources at Tohoku University | FEL, radiation, electron, synchrotron | 2386 |
|
|||
To develop a coherent Terahertz (THz) light sources, producing very short electron bunch has been progressed at Laboratory of Nuclear Science, Tohoku University. We have developed an independently-tunable-cells (ITC) RF gun consisted with two cavities and thermionic cathode in order to produce bunch length around a hundred femto-second. Possibility of pre-bunched FEL is investigated by numerical simulations. In case of the bunch length shorter than wavelength, the FEL interaction seems to be different from conventional way. High intensity and short FEL pulse is possibly obtained *. In a broad band regime, coherent spontaneous THz radiation has been developed. A ring type source consisted with isochronous arcs can provide the coherent THz pulses from every bending magnets. The project has aimed multi-user facility **. In addition, a compact DC gun is also under development. Measured normalized emittance is less than 1μrad for a beam energy of 50 keV and a beam current of 300 mA. This low emittance beam is quite suitable for driving Smith-Purcell Backward Wave Oscillator FEL in THz region. Detail of the DC gun and prospect will be presented ***. *M. Yasuda et al., Proc. FEL08, (2008) in press. |
|||
WE6PFP028 | Recent Experience with Electron Lens Beam-Beam Compensation at the Tevatron | electron, proton, luminosity, beam-beam-effects | 2552 |
|
|||
Tevatron Electron Lenses (TEL) have reliably demonstrated correction of the bunch-to-bunch tune shift induced by long-range beam-beam interactions. The second and most important intended application of TEL is compensation of the nonlinearity of head-on beam-beam force. We report on the first studies of head-on beam-beam compensation with the second generation Gaussian profile TEL. We evaluate the effect of TEL on beam life time and emittance and compare the observed results with simulations. |
|||
WE6PFP029 | Tevatron Electron Lens Upgrade | electron, proton, pick-up, beam-beam-effects | 2555 |
|
|||
Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359 A novel high voltage modulator had been under development for 1.5 years. It was completed tested on the bench and became a part of the TEL2 system in October 2008. The modulator is used to drive the electron gun anode. We provide technical details on the stacked transformer modulator, analyze its performance and discuss the design challenges. The results of the beam studies made possible by the new high voltage modulator are reported. |
|||
WE6PFP035 | Suppression of Beam-Beam Tune Spread Using Hollow Electron Beam | electron, proton, antiproton, simulation | 2570 |
|
|||
Funding: Work supported by the United States Department of Energy under Contract No. DE-AC02-07CH11359 Significant difference in transverse size of the proton and antiproton bunches at collision points is known to cause deterioration of the larger (proton) beam life time at Tevatron. The reason is believed to be in the combination of large betatron tune spread induced by the high nonlinearity of the beam-beam force, and limited tune space. We consider the prospects for application of hollow electron beam for beam-beam tune spread suppression. |
|||
WE6PFP112 | Current Status of the 12 MeV UPC Race-Track Microtron | vacuum, linac, electron, controls | 2775 |
|
|||
A compact race-track microtron (RTM) with the maximal output energy 12 MeV is under construction at the Universitat Politècnica de Catalunya (UPC) in collaboration with the Skobeltsyn Institute of Nuclear Physics of the Moscow State University, CIEMAT and a few Spanish industrial companies and medical centers. The RTM end magnets are four-pole systems with the magnetic field created by a rare-earth permanent magnet material. As a source of electrons a 3D off-axis electron gun is used. These elements together with a C-band accelerating structure, dipole magnets, which allow to extract the electron beam with energy from 6 MeV to 12 MeV in 2 MeV step, and a focusing quadrupole are placed inside a vacuum chamber. We report on the current status of the technical design and results of tests of some of the components. |
|||
WE6RFP055 | The Argonne Wakefield Accelerator Facility (AWA): Upgrades and Future Experiments | wakefield, electron, acceleration, accelerating-gradient | 2923 |
|
|||
Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-06CH11357. The Argonne Wakefield Accelerator Facility is dedicated to the study of advanced accelerator concepts based on electron beam driven wakefield acceleration and RF power generation. The facility employs an L-band photocathode RF gun to generate high charge short electron bunches, which are used to drive wakefields in dielectric loaded structures as well as in metallic structures (iris loaded, photonic band gap, etc). Accelerating gradients as high as 100 MV/m have been reached in dielectric loaded structures, and RF pulses of up to 44 MW have been generated at 7.8 GHz. In order to reach higher accelerating gradients, and also be able to generate higher RF power levels, a photocathode with higher quantum efficiency is needed. Therefore, a new RF gun with a Cesium Telluride photocathode will replace the electron gun that has been used to generate the drive bunches. In addition to this, a new L-band klystron will be added to the facility, increasing the beam energy from 15 MeV to 23 MeV, and thus increasing the total power in the drive beam to a few GW. The goal of future experiments is to reach accelerating gradients of several hundred MV/m and to extract RF pulses with GW power level. |
|||
WE6RFP056 | Development of a Non-Axisymmetric Permanent Magnet Focusing System for Elliptic Charged-Particle Beams | cathode, electron, simulation, focusing | 2926 |
|
|||
Funding: This work was funded in part by the Department of Energy, Grant No. DE-FG02-07ER84910 and Grant No. DE-FG02-95ER40919, and the MIT Deshpande Center for Technological Innovation. High-brightness space-charge-dominated elliptic electron or ion beams have wide applications in high-power rf sources, particle accelerators, and/or ion implantation. Building upon recent inventions and theoretical studies on the generation and transport of elliptic charged-particle beams, a basic research and development program is being carried out to experimentally demonstrate a high-brightness, space-charge-dominated elliptic electron beam using a non-axisymmetric permanent magnet focusing system and an elliptic electron gun. Results of the design of such an elliptic electron beam system are presented. |
|||
WE6RFP062 | Development of a GHz/THz Source Based on a Diamond Structure | cavity, laser, linac, wakefield | 2936 |
|
|||
Funding: This work is supported by the US Department of Energy There has been considerable progress in using microfabrication techniques to produce experimental rf sources. These devices have for the most part been based on micromachined copper surfaces or silicon wafers. We are developing THz diamond wakefield structures produced using Chemical Vapor Deposition (CVD) technology. The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric rf structures: high breakdown voltage (~600 MV/m), extremely low dielectric losses and the highest thermoconductive coefficient available for removing waste heat from the device. These structures are based on cylindrical diamond dielectric tubes that are manufactured via a relatively simple and inexpensive chemical vapor deposition (CVD) process, plasma assisted CVD. Use of the CVD process is a much simpler method to achieve high quality rf microcavities compared to other microfabrication techniques. We are designing a number of diamond rf structures with fundamental TM01 frequencies in the 0.1-1 THz range. Numerical simulations of planned experiments with these structures will be reported. |
|||
TH3PBI02 | Progress of the SCSS Test Accelerator for XFEL/SPring-8 | electron, FEL, laser, undulator | 3120 |
|
|||
The SPring-8 compact SASE source (SCSS) test accelerator was constructed in FY2005 to demonstrate a new concept for X-ray free electron lasers composed of a low-emittance thermionic electron injector, a high-gradient normal conducting C-band accelerator, and a short-period in-vacuum undulator. With a 250 MeV electron beam, continuous SASE saturation can generate intense and stable FEL beams at the wavelength range from 50 to 60 nm with the maximum pulse energy of 30 micro-J and the intensity fluctuation of ~10%. Analysis of the SASE saturation data with a 3D-FEL simulation code suggests negligible degradation of the electron beam emittance during the high bunch compression process. We also succeeded in operating the C-band accelerator with a high accelerating gradient of 37 MV/m and a repetition rate of 60 pps. Now, the FEL beam is routinely delivered for user experiments. At this conference we will present the machine performance and recent progress of the SCSS test accelerator together with the anticipated performance of the 8 GeV XFEL under construction. |
|||
|
|||
TH5PFP020 | Beam Studies with Electron Columns | electron, proton, vacuum, accumulation | 3233 |
|
|||
We report preliminary results of experimental studies of "electron columns" in the Tevatron and in a specialized test setup. In the Tebvatron, 150 GeV beam of protons ionized residual gas and ionization electrons are stored in an electrostatic trap immersed into strong longitudinal magnetic field. Shifts of proton betatron frequencies are reported. In the test set, we observe effects pointing to accumulation and escape of ionization electrons. |
|||
TH5PFP094 | Bunch Length Measurement with RF Deflecting Cavity at Tsinghua Thomson-Scattering X-Ray Source | cavity, electron, cathode, scattering | 3429 |
|
|||
Funding: Supported by National Natural Science Foundation of China (No.10775080) An S-band RF deflecting cavity has been developed and applied for measuring the bunch length at Tsinghua Thomson-Scattering X-ray Source (TTX). This paper briefly introduces the 3-cell pi-mode standing-wave deflecting cavity and reports the recent experiments of the beam diagnostics for the photo-cathode RF gun, which produces electron bunches with RMS length around 1-ps. It is also observed that the bunches are lengthened while the total charge increases, showing the strong space charge effect at a low beam energy. |
|||
TH5RFP043 | Mitigation of COTR due to the Microbunching Instability in Compressed Electron Beams | linac, optics, radiation, booster | 3546 |
|
|||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. The challenge of mitigating the strong enhancements of the optical transition radiation (OTR) signal observed after bunch compression in the Advanced Photon Source (APS) linac chicane and at the Linac Coherent Light Source (LCLS) has recently been addressed. We have demonstrated a technique to mitigate the intensity of the coherent OTR (COTR) relative to the OTR signals on the APS beams at 325 MeV. Since the previously reported spectral content of the COTR at LCLS after the first compression stage is similar, the concepts should also apply to LCLS. We utilized the stronger violet content at 400 nm of the OTR compared to the observed gain factors of the COTR in the blue to NIR regime. We also demonstrated the use of an LSO:Ce scintillator that emits violet light to support lower-charge imaging. Spectral-dependence measurements of the COTR were done initially at the 325-MeV station using a series of band pass filters inserted before the CCD camera, but recent tests with an Oriel spectrometer with ICCD readout have extended those studies and confirmed the concepts. These techniques are complementary to the proposed use of a laser heater to mitigate the microbunching itself at LCLS. |
|||
TH6PFP001 | Injector Design for Turkish Accelerator Center Free Electron Laser Facility | FEL, electron, cavity, solenoid | 3687 |
|
|||
Funding: State Planning Organization of Turkey Turkish Accelerator Center (TAC) Infrared (IR) Free Electron Laser facility (FEL) supported by State Planning Organization (SPO) of Turkey will be based on 15-40 MeV energy range electron linac and two different undulators with 2.5 cm and 9 cm period lengths in order to obtain FEL in 2-250 micron wavelength range. The electron linac will consist of two superconducting ELBE modules which houses two 9-cell TESLA cavity in one module and can operate in cw mode. The electron bunches in cw mode which are compatible with the main linac will be provided by a thermionic gun and an injector system which is totally based on normal conducting technology. In this study the injector design for TAC IR FEL is represented and beam dynamics issues were discussed for suitable injection to first accelerating module. |
|||
TH6PFP069 | Bunch Length Measurement Using a Travelling Wave RF Deflector | electron, FEL, cavity, laser | 3865 |
|
|||
RF deflectors can be used for bunch length measurement with high resolution. This paper describes the completed S-band travelling wave RF deflector and the bunch length measurement of the electron beam produced by the photocathode RF gun of Shanghai DUV-FEL facility. The deflector’s VSWR is 1.06, the whole attenuation 0.5dB, and the bandwidth 4.77MHz for VSWR less than 1.1. With laser pulse width of 8.5ps, beam energy of 4.2 MeV, bunch charge of 0.64 nC, the bunch lengths for different RF input power into the deflector were measured, and the averaged rms bunch length of 5.25 ps was obtained. A YAG crystal is used as a screen downstream of the deflector, with the calibrated value of 1pix =136um. |
|||
TH6REP098 | Preinjector Gun Upgrade, Timing and Synchronization and Preparation for the Top-Up Injection in Elettra | injection, booster, controls, storage-ring | 4183 |
|
|||
Elettra is the third generation light source in operation in Trieste since 1993,upgraded with a full energy booster injector last year. Top-up operation is on schedule in the near future but already the new timing system and gun are ready to operate in this mode. The paper describes all tasks and requirements needed to satisfy top-up injection include custom made hardware, interaction with controls and radiation protection system. |
|||
TH6REP101 | Timing Jitter Characterization at the NSLS SDL | laser, electron, linac, simulation | 4189 |
|
|||
Synchronization between a laser system and an electron beam plays a critical role in photoinjector operation, pump-probe experiments and many other applications. Here we report two novel experimental techniques for measuring the laser to RF timing jitter in a photoinjector, and e-beam arrival timing jitter after a magnetic chicane bunch compressor. The laser to RF timing jitter was characterized by observing the electron beam charge fluctuation through the Schottky effect. This technique was used to characterize the SDL photoinjector laser to RF timing jitter as a function of the temperature fluctuation in the laser room, and we have shown the resolution of this technique is ~100 fs. A stripline beam position monitor (BPM) located down stream of the compressor will be used to investigate the e-beam arrival timing jitter after a magnetic chicane bunch compressor; the outputs of the stripline BPM can be used to measure the arrival timing jitter by mixing them with a RF reference signal. The effect of the chicane on the arrival time jitters will be studied for the first time using this technique. |
|||
FR5PFP027 | Extended ALICE Injector | booster, cavity, emittance, diagnostics | 4363 |
|
|||
Results of designing of the extended ALICE injector with the aim to include a special dedicated diagnostic line are presented. The purpose of the diagnostic line is to characterise the low energy beam, before it enters the booster, as much as possible. A key component of the ALICE is the high brightness injector. The ALICE injector consists of a DC photocathode gun generating ~ 80 pC electron bunches at 350 keV. These bunches are then matched into a booster cavity which accelerates them to an energy of 8.35 MeV. In order to do this, three solenoids and a single-cell buncher cavity are used, together with the off-crest of the first booster cavity where the beam is still far from being relativistic. The performance of the injector has been studied using the particle tracking code ASTRA. |
|||
FR5PFP039 | Verification of the AWA Photoinjector Beam Parameters Required for a Transverse-to-Longitudinal Emittance Exchange Experiment | emittance, booster, simulation, laser | 4393 |
|
|||
A transverse-to-longitudinal emittance exchange experiment is in preparation at the Argonne Wakefield Accelerator (AWA). The experiment aims at exchanging a low (< 5 mm-mrad) longitudinal emittance with a large (>15 mm-mrad) transverse horizontal emittance for a bunch charge of 100 pC. Achieving such emittance partitioning, though demonstrated via numerical simulations, is a challenging task and need to be experimentally verified. In this paper, we report emittance measurements of the beam in the transverse and longitudinal planes performed at 12 MeV. The measurements are compared with numerical simulations using Impact-T. |
|||
FR5PFP040 | Measurement and Simulation of Space Charge Effects in a Multi-Beam Electron Bunch from an RF Photoinjector | space-charge, laser, electron, simulation | 4396 |
|
|||
Funding: M.R. and P.P. was supported by the US DOE under Contracts No. DE-FG02-08ER41532 with NIU. W.G., J.P., and Z.Y. are supported by the U.S. DOE under Contract No. DE-AC02-06CH11357 with ANL. We report on a new experimental study of the space charge effect in a space-charge-dominated multi-beam electron bunch. A 5 MeV electron bunch, consisting of a variable number of beamlets separated transversely, was generated in a photoinjector and propagated in a drift space. The collective interaction of these beamlets was studied for different experimental conditions. The experiment allowed the exploration of space charge effects and its comparison with three-dimensional particle-in-cell simulations. Our observations also suggest the possible use of a multi-beam configuration to tailor the transverse distribution of an electron beam. |
|||
FR5PFP056 | Beam Dynamics and RF Cavity Design of a Standing/Traveling-Wave Hybrid Photoinjector for High Brightness Beam Generation | dipole, quadrupole, cavity, linac | 4434 |
|
|||
A hybrid photoinjector, which we present here, consists of a 6-cell traveling wave structure with a standard 1.6-cell RF gun attached to the one end and a 3-m long linac following for further acceleration. With this structure, no reflection observed at the input port. This enables to build the accelerator without a circulator which limits the power and the frequency of RF. From the beam dynamics point of view, the beam is produced as the normal RF guns and gets short by velocity bunching in the traveling wave section right after the gun. The peak current can reach more than 1 kA, with about 2 mm.mrad of the emittance at 20 MeV. We discuss more details about the beam dynamics as well as the RF structure. |
|||
FR5PFP057 | Beam Dynamics Simulations of the Velocity Bunching in a Superconducting Linac | emittance, bunching, linac, simulation | 4437 |
|
|||
The velocity bunching is a hot topic in normal conducting photoinjectors to generate high-brightness beams instead of magnetic chicanes in the low energy region. We apply this technique to the superconducting photoinjectors. The linac considered here consists of several 9-cell TESLA cavities, the standard 1.6-cell normal conducting RF gun is assumed, though. In the case of 1.1 nC injection, the peak current increases to 1 kA with 2.6 mm.mrad of the emittance. The peak current can be higher but the emittance becomes worse in that case, and vice versa. We discuss more details on the spot. |
|||
FR5PFP058 | Longitudinal Beam Bucket Studies for a Space-Charge Dominated Beam | focusing, induction, space-charge, electron | 4440 |
|
|||
Funding: * This work is funded by US Dept. of Energy Offices of High Energy Physics and High Energy Density Physics, and by the US Dept. of Defense Office of Naval Research and Joint Technology Office. The containment of beams in the longitudinal direction is fundamental to the operation of accelerators that circulate high intensity beams for long distances such as the University of Maryland Electron Ring (UMER); a scaled accelerator using low-energy electrons to model space-charge dynamics. The longitudinal space-charge forces in the beam, responsible for the expansion of the beam ends, cause a change in energy at the beam head/tail with respect to the main injected energy or flat-top part of the beam. This paper presents the first experimental results on using an induction cell to longitudinally focus the circulating beam within the UMER lattice for multiple turns. Keywords: electron ring, focusing, induction cell. |
|||
FR5PFP069 | Parallel 3D Finite Element Particle-in-Cell Simulations with Pic3P | simulation, space-charge, emittance, SRF | 4470 |
|
|||
Funding: This work was supported by DOE Contract No. DE-AC02-76SF00515 and used resources of NERSC supported by DOE Contract No. DE-AC02-05CH11231, and of NCCS supported by DOE Contract No. DE-AC05-00OR22725. SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic Particle-In-Cell code Pic3P. Designed for simulations of beam-cavity interactions dominated by space charge effects, Pic3P solves the complete set of Maxwell-Lorentz equations self-consistently and includes space-charge, retardation and boundary effects from first principles. Higher-order Finite Element methods with adaptive refinement on conformal unstructured meshes lead to highly efficient use of computational resources. Massively parallel processing with dynamic load balancing enables large-scale modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of next-generation accelerator facilities. Applications include the LCLS RF gun and the BNL polarized SRF gun. |
|||
FR5RFP002 | Design of a 20.8/35.1 GHz Higher-Order-Mode Dielectric-Loaded Power Extractor Set | electron, coupling, single-bunch, HOM | 4538 |
|
|||
We report on the design of a dual-frequency higher-order-mode dielectric-loaded power extraction set. This power extraction set consists of a dual-frequency dielectric-loaded decelerating structure (decelerator) and two changeable output couplers. In the decelerator, the TM02 mode synchronizes with an ultra-relativistic electron beam at 20.8GHz, and the TM03 mode synchronizes with the beam at 35.1GHz. These frequencies are both harmonics of 1.3GHz, the operating frequency of the electron gun and linac at the Argonne Wakefield Accelerator. The power generated in the unwanted TM01 mode is effectively suppressed for bunch train operation with a novel mode suppression technique. To extract power from the decelerator to standard rectangular waveguides, a TM02-TE10 output coupler was designed with S21 = -0.26dB at 20.8GHz, and a TM03-TE10 output coupler with S21 = -0.66dB at 35.1GHz. 90.4MW and 8.68MW rf power are expected to be extracted from a drive beam with charge of 50nC per bunch, at 20.8GHz and 35.1GHz respectively. |
|||
FR5REP016 | High-Level Controls Upgrade at the ALS | controls, EPICS, booster, electron | 4805 |
|
|||
Funding: This work was supported by U.S. Department of Energy under Contract No. DE-AC03-76SF00098. The Advance Light Source (ALS) is in the process of upgrading the high-level controls software. This welcome upgrade is driven by the need for a low-level controls hardware upgrade. The risk of a failure in some of the aging controls hardware is reaching a critical level. The dilemma is that replacing the low-level hardware will break some important control room applications. An effort has been started to replace all the high-level software in a way that is compatible with an incremental low-level hardware replacement. As will be presented in this paper, the plan involves combining three very different programming methods: C#, Matlab, and EPICS tools. |
|||
FR5REP022 | XAL-Based Applications and Online Model for LCLS | cathode, controls, solenoid, cavity | 4811 |
|
|||
Funding: Work supported in part by the DOE Contract DE-AC02-76SF00515. This work was performed in support of the LCLS project at SLAC. XAL, a high-level application framework originally developed by Spallation Neutron Source (SNS), has been adapted by the Linac Coherent Light Source (LCLS) project. The work includes proper relational database schema modification to better suit XAL configuration data requirement, addition of new device types for LCLS online modeling purpose, longitudinal coordinate system change to better represent the LCLS electron beam rather than proton or ion beam in the original SNS XAL design, intensively benchmark with MAD and present SLC modeling system for the online model, and various new features to the XAL framework. Storing online model data in a relational database and providing universal access methods for other applications is also described here. |
|||
FR5REP034 | Reliability in the LCLS Era at SLAC | controls, linac, power-supply, vacuum | 4844 |
|
|||
Funding: Work supported by US DOE For LCLS, an uptime of 95% of the scheduled beam time is aimed for. This is a challenging goal for a linac-driven facility, exceeding typical up time during PEP-II running by a significant amount. During the 2008 and the 2009 LCLS beam-commissioninng runs we have been gathering and analysing statistics to identify the worst offenders as far as downtime is concerned. In 2008, an overall hardware uptime of 90% was achieved, indicating the need to decrease our downtime by a factor of two. One approach to focus the effort has been to identify those faults that cause the worst performance for a system in a given time period and focus on these. Another one is to compare our MTTR performance with that of other facilities thus identifying where our processes might be improved. In this paper we will show how we track our performance and examples of the benefit of addressing identified reliability issues. |
|||
FR5REP048 | Optimization of the Bunch Compressor at BNL NSLS Source Development Laboratory | linac, simulation, electron, synchrotron | 4878 |
|
|||
At BNL NSLS Source Development Laboratory (SDL) 70MeV electron bunches are compressed by the bunch compressor (BC) consisting of a linac section followed by a 4-magnet chicane. The achievable beam compression is limited by nonlinear beam dynamics in the BC and by coherent synchrotron radiation (CSR) effect. In this report we present a novel beam-based technique of chicane calibration, describe the measurements of CSR effect on the beam in the chicane, and discuss the possible scenarios of the BC optimization. |
|||
FR5REP077 | Performance Analysis and Improvement of the 50 MeV Linac for the Taiwan Light Source | controls, linac, booster, injection | 4956 |
|
|||
Operation performance of the linear accelerator is crucial to satisfy stringent requirements for the top-up operation of the Taiwan Light Source. The performance of linear accelerator affects injector stability directly. Efforts to improve diagnostics and develop control applications for performance characterization are on going. Enhance operation performance of 50 MeV linac is also under way. Efforts for the improvement of the linac to provide better top-up injection performance will be summary in this report. |
|||
FR5REP080 | Commissioning Status of 10-MeV Intense Electron Linac | electron, linac, simulation, klystron | 4965 |
|
|||
Funding: This work is supported by KAPRA and POSTECH Physics BK21 Program. An intense L-band electron linac is now being commissioned at ACEP (Advanced Center for Electron-beam Processing in Cheorwon, Korea) for irradiation applications. It is capable of producing 10-MeV electron beams with the 30-kW average beam power. For a high-power capability, we adopted the traveling-wave structure operated with the 2π/3-mode at 1.3 GHz. The structure is powered by a 25-MW pulsed klystron with 60-kW average RF power. The RF pulse length is 8 μs while the beam pulse length is 7 μs due to the filling time in the accelerating structure. The accelerating gradient is 4.2 MV/m at the beam current of 1.45 A which is the fully beam-loaded condition. In this paper, we present details of the accelerator system and commissioning status. |
|||
FR5REP088 | Commissioning of the 100 MeV Preinjector for the ALBA Synchrotron | linac, emittance, cavity, beam-loading | 4984 |
|
|||
A turn key 100 MeV linac was provided by THALES Communications in order to inject electrons into the booster synchrotron of ALBA*. The linac was commissioned in October 2008. This paper will remind the main features of the linac** and will give results obtained during the commissioning tests. The energy and emittance measurements have been done on the transfer line concieved and realized by CELLS. Specified and measured beam parameters will be compared to show the performance of the entire system. * D. Einfeld "Progress of ALBA", EPAC08, Genoa, Italy, June 2008. |
|||
FR5REP091 | The Primary Experiment of Multipactor Electron Gun Based Accelerator | electron, cavity, multipactoring, cathode | 4990 |
|
|||
The Multipactor Electron Gun (MEG) can produce high current self-bunching electron beams. In this paper, the primary experimental results of an S-band MEG based accelerator are presented. The accelerator was modified from a 6MeV standing wave accelerator to integrate the MEG, which has an adjusting structure to control both the cathode-grid distance and frequency tuner. The designed output energy is 5MeV and average current is 100mA. The experiment included low power microwave parameter measurement and high power beam test. In the microwave parameter measurement, the relationship between tuner position and E-field distribution was investigated. Platinum was used as the secondary electron emitters of the MEG. The multipacting process was observed and an average current of 40mA was collected by an aluminum target. |