LASER SYSTEMS FOR NEXT GENERATION LIGHT SOURCES

Miltcho B. Danailov
Alexander Demidovich
Rosen Ivanov
Ivaylo Nikolov
Paolo Sgalotti
Sincrotrone-Trieste
Yurii Loyko
B.I. Stepanov Institute of Physics, Minsk
OUTLINE

• Introduction
• Main laser systems in the FEL light sources under development
• General requirements
• Specific issues
 A. Photoinjector laser
 B. Laser Heater
 C. Seed Lasers
• New laser developments
 (high rep rate /average power, VUV-soft tuneable X-ray seed)
• Jitter and drift problems: strategies for reduction
Main laser systems in the FEL light sources under development

- Photoinjector laser
- Seed laser
- User lasers
- Laser Heater
- Optical master oscillator
- Electro-optical sampling laser
- Short pulse ‘chirping laser’
- …more to come!
GENERAL REQUIREMENTS

- Wavelength: mostly UV, IR in LH; tuneable in SL
- Rep rate 10 Hz-120 Hz normal conducting; up to MHz superconducting
- Synchronization to external reference with jitter 20-200fs RMS; no phase (CEP) stabilization requested so far
- Pulse duration: 50fs-15 ps FWHM (risetime < 1 ps)
- Pulse energy: 10 - 500 μJ
- Pulse shaping: flat-top, increasing quadratic ramp, very short gaussian with low TBWP
- Beam shaping: flat-top; gaussian; well-behaving in propagation
- Pulse-to-pulse stability: < 4% RMS, goal <2% -> diode-pumping!
- High reliability (>99% uptime)-> must be based on a mature technology
- Commercial units available
- Easy to integrate in a facility -> Remote control/diagnostics

In general: no commercial system meeting all!
PHOTOINJECTOR LASER

- Pulse energy requirements depend on the type of gun

 1. Cu-based gun on normal conducting machines
 - 0.4 mJ at 260 nm on cathode -> >15 mJ in IR (12% THG efficiency, 25% transmission pulse/beam shaping and beam transport)
 - Bandwidth at least 4 nm in IR to allow <1 ps rise/fall times
 - Commercially available units

At present only choice Ti:Sapphire based femtosecond oscillator+regenerative amplifier +2 stage multipass amplifier, pumped by diode-pumped Nd:YLF Q-switched lasers

PAC'09

M.B. Danailov et al
PHOTOINJECTOR LASER

- Pulse energy requirements depend on the type of gun
 1. Cu-based gun on normal conducting machines
 - 0.4 mJ at 260 nm on cathode -> >15 mJ in IR (12% THG efficiency, 25% transmission pulse/beam shaping and beam transport)
 - Bandwidth at least 4 nm in IR to allow <1 ps rise/fall times
 - Commercially available units

At present only choice Ti:Sapphire based femtosecond oscillator+regenerative amplifier +2 stage multipass amplifier, pumped by diode-pumped Nd:YLF Q-switched lasers
PHOTOINJECTOR LASER

- Pulse energy requirements depend on the type of gun

1. Cu-based gun on normal conducting machines
 - 0.4 mJ at 260 nm on cathode -> >15 mJ in IR (12% THG efficiency, 25% transmission pulse/beam shaping and beam transport)
 - Bandwidth at least 4 nm in IR to allow <1 ps rise/fall times
 - Commercially available units

At present only choice Ti:Sapphire based femtosecond oscillator+regenerative amplifier +2 stage multipass amplifier, pumped by diode-pumped Nd:YLF Q-switched lasers

PAC’09

M.B.Danailov et al
1. PULSE SHAPING SCHEMES
 FREQUENCY DOMAIN:
 - 4-f dispersive system (or other geometries)
 - DAZZLER (acousto-optic dispersive Filter), Fastlite
 TIME DOMAIN
 - Pulse stacking

2. TWO STAGE SETUP FOR FERMI
UV PULSE SHAPING

MAIN ISSUES:

a. High UV energy/peak power -> aging and damage gratings and other optics
 Solution: use large beam diameter, transmission gratings, multilayer deformable mirror and CaF2 optics

b. Narrow spectrum: long focal length lenses in the 4-f system

Development of genetic algorithm for pulse shape optimization
Aging of the deformable mirror

PAC’09

M.B.Danailov et al
2. Pulse stacking: in UV the final shape is obtained by the addition of a number of delayed pulses; polarisation splitting used to avoid interference effects.

Issues: complexity increases with number of stages; sensitivity to alignment.

Courtesy: H. Tomizawa

New scheme based on birefringent crystals
Dispersion compensation needed.
PIL Beam Shaping

- Transformation of gaussian into flat-top beam in UV
 - Aspheric shaper Newport (used at SLAC)
 - Optimized aspheric shaper MBI (less sensitive to alignment)
 - Shaper MOLTECH (based on spherical lenses) Elettra
 - Circular aperture to select only the central part of the beam SLAC, SPARC
 - Adaptive shaper (e.g. deformable mirror, Tomizawa, SPring8)
- Why not producing the flat-top in IR?
 Advantages: better HG efficiency and no spatial chirp
 Problems: very large size needed to avoid nonlinear effects; the flat-top develops a modulation which would be a problem for the 4-f system
Important: in the FERMI PI design last mirror is outside the vacuum.
Lasers for high rep rate machines

- MBI scheme, used at FLASH, to be used for the European XFEL (low rep rate macrobunches, up to 800 micropulses)

First version: Nd:YLF linear amplifier
Chain; upgraded recently to diode
Pumping
Next generation: Yb:YAG based

- Lasers for true CW operation
 Cu-based 1 nC machine: at least 3 mJ needed in the IR
 - Ti:Sapphire - > based on existing technology good to 10-20 KHz
 (50 W level systems are available, based on crio-cooling and
downchirped amplification)
 - If pulse rise-time requirement is decreased to 2 ps, Nd:YLF could be used
 - Yb:KYW; Yb:Lu2O3 promising, literature reports 10μJ, MHz range
 - Yb-fibre based systems - 100 μJ

PAC'09 M.B. Danailov et al
SEED LASER

- In general, a laser pulse interacting with the e-bunch in an undulator to create bunching at a (short) wavelength.
- FERMI is the first FEL entirely based on seeding, with two FEL lines having configurations based on a single seed laser operating in the 200-300 nm range.

Courtesy E. Allaria

PAC’09

M.B. Danailov et al
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specs</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunability range (nm)</td>
<td>240-360</td>
<td>195-350</td>
</tr>
<tr>
<td>Peak power (MW)</td>
<td>100</td>
<td>>100</td>
</tr>
<tr>
<td>Pulse duration (fs)</td>
<td>100</td>
<td><100</td>
</tr>
<tr>
<td>Pulse Energy Stability RMS 5000 shots</td>
<td><4%</td>
<td><2%</td>
</tr>
<tr>
<td>Timing jitter (fs RMS)</td>
<td><100 fs</td>
<td>TBM</td>
</tr>
<tr>
<td>Pointing stab. (μrad)</td>
<td><20 (goal 10)</td>
<td><20</td>
</tr>
<tr>
<td>Wavelength stab.</td>
<td>10⁻⁴</td>
<td><10⁻⁴</td>
</tr>
<tr>
<td>Beam quality (M²)</td>
<td><1.5</td>
<td>TBM</td>
</tr>
</tbody>
</table>
FERMI SEED LASER PERFORMANCE

100MW level Tuning curve in UV

TOPAS Regen Amp Seed fibre laser

Typical Spectrum and crosscorrelation with short Visible pulse

Spatial distribution at focus

PAC’09 M.B.Danailov et al
Recent upgrade to shorter wavelength

Near future Upgrade:
- Extension to 165-195 nm region by using KBBF (Mixer 4)
- Upgrade of the pump laser to 8-10 mJ range by adding one multi-pass stage
- Controlled pulse delay at the exit with wavelength tuning
VUV/EUV UPGRADE UNDER STUDY

SEED BY HG IN GASES

Required:
- Tunability in the range 40-70 nm (by full tunability between two harmonics);
- Peak power in the 1MW range pulse energy: 150 nJ range if HHG chamber is in the laser room, 50 nJ range with HHG chamber close to the undulator entrance and aligned;
- Pulse duration 25-30 fs

Main options for the pump laser under consideration
- Use of UV or VIS pulses from an upgraded version of the present parametric amplifier/HG system: expected 200 μJ, 80 fs in UV and 800 μJ, 50 fs in VIS
- Use of a commercially available tuneable Ti:Sapphire amplifier, tuning range ±30 nm around 790 nm, pulse duration: 50 fs; pulse energy 10 mJ
- Use of fixed wavelength pump and tuning of the HG output by controlling other parameters

PAC'09

M.B.Danailov et al
Main idea: replace Ti:Sapphire oscillators with amplified frequency doubled timing pulses for seeding the regen amplifiers.

Main issues:
- Power (>0.5 nJ at 780 nm needed)
- Bandwidth (>8 nm for a 100 fs system, >20 nm for seeding a 50 fs range amp)
Tests Laser Jitter

Test of PIL locking to an external fibre laser by optical cross-correlation.

Phase noise measurement

Distribution of arrival time at the second x-corr

Jitter $32\, \text{fs}_{\text{RMS}}$

PAC'09

M.B. Danailov et al.
CONCLUSIONS

- Ultrafast lasers are becoming crucially important part of new VUV and X-ray FELS
- Ti:Sapphire based systems will continue to be the most popular for up to 10 kHz rate
- Higher rep rate facilities will most probably need an alternative technology. Promising candidate Yb-doped thin-disk media and especially fiber based oscillators and amplifiers
- Tunable seeding with HHG in the 40 nm range feasible
- Dedicated R&D on ultrafast lasers applied to FEL technology may substantially improve the performance

THANK YOU FOR THE ATTENTION
BACKUP SLIDES
HHG SEED BASED ON TUNABLE Ti:SAPPHIRE AMPLIFIER

PROPOSED APPROACH FOR REACHING THE PARAMETERS REQUIRED FOR FEL SEEDING
- HHG in Xe in the 45-75 nm range
- Use of Tunable Ti:Sapphire based regen+multipass amplifier with the following parameters:
 Tunability ±25 nm around 800 nm
 Use of bi-chromatic pump (800 nm +400 nm) for production of odd+even harmonics
 Pulse duration 50 fs
 Pulse energy : 10 mJ (up to 15 mJ) at 800 nm /2 mJ at 400 nm
Approach for obtaining the amplifier tunability developed by Amplitude Technologies:
 Broadband seed oscillator (>100 nm)
- Spectral phase shaping before Regenerative Amplifier (Dazzler)
- Spectral amplitude shaping in the Regenerative amplifier (Mazzler)
- Pulse/spectrum measurement after multipass amplifier and closed loop control of the Dazzler/Mazzler for remote controlled wavelength tuning

Tunability curve demonstrated by Amplitude Technologies (courtesy F.Canova, G.Riboulet)

PAC’09 M.B.Danailov et al
Seed a Ti:sapphire amplifier after pulse shaping/amplification:
~100 fs (~3 nJ @ 1550 nm & ~1 nJ @ 775 nm)

Where we are:
- SHG unit based on chirped PPLN developed
- Tests of the amplifier setup started

PAC'09

M.B. Danailov et al
SHG results

Input spectrum (Menlo TC1550)
CrossCorrelator Test Bed

PAC'09

M.B. Danailov et al
Locking setup

Optical Phase reference
157MHz
Delay line

10GHz PD
BPF 2998MHz
Phase Shifter

OMO-OSO x-correlation
Low speed PD
LPF

LNA
Regulator
HV Ampli
Piezo
Galvo
Amplifier

Optical Slave Oscillator

Trigger
78.895MHz

78.895MHz - Sinewave

Trigger (50Hz)

BPF 79MHz
Low speed PD

50Hz
delay box

Control System

PAC'09

M.B. Danailov et al
Balanced Crosscorrelator