Paper | Title | Other Keywords | Page |
---|---|---|---|
D-05 | Electron Cooling of Pb54+ Ions in LEIR | electron, ion, injection, controls | 294 |
|
|||
Electron cooling is central in the preparation of dense bunches of lead beams for the LHC. Ion beam pulses from the Linac3 are transformed into short high-brightness bunches using multi-turn injection, cooling and accumulation in the Low Energy Ion Ring, LEIR. The LEIR cooler was the first of a new generation of coolers utilising high-perveance variable-density electron beams for the cooling and accumulation of heavy ion beams. It was commissioned in 2006 at the same time as the LEIR ring and has since been used to provide lead ions for the commissioning of the LHC injector chain. We report briefly on the status of the LHC ion injector chain and present results of measurements made to check and to better understand the influence of the electron beam size, intensity and density profile on the cooling performance. Future plans to improve the performance of the device will also be presented. |
|||
E-02 | Simulation and Design of Tubular Electron String Ion Source | electron, ion, extraction, cathode | 321 |
|
|||
The so-called reflex mode of Electron String Ion Source (ESIS) operation has been under intense study, both experimental and theoretical at JINR during the last decade. The idea of using a tubular electron string ion source (TESIS) has been put forward recently to obtain 1- 2 orders of magnitude increase in the ion output as compared with ESIS. The project is aimed at creating TESIS and studying an electron string in the tubular geometry. The new tubular source with a superconducting solenoid up to 5 T should be constructed in 2010. The method of the off-axis TESIS ion extraction will be used to get TESIS beam emittance comparable with ESIS emittance. It is expected that this new TESIS (Krion T1) will meet all rigid conceptual and technological requirements and should provide an ion output approaching 10 mA of Ar16+ ions in the pulse mode and about 10 μA of Ar16+ ions in the average current mode. Analytical, numerical study of the tubular electron strings and the design of the TESIS construction are given in this report. The experiments with quasi tubular electron beams performed on the modified ESIS Krion 2 are also discussed there. |
|||
E-04 | Novel Modes of Vacuum Discharge in Magnetic Field as the Base for Effective Ion Generation | electron, ion, ion-source, plasma | 331 |
|
|||
New properties of vacuum discharges in magnetic field with unconventional discharge gaps at low pressure up to high vacuum are briefly described. Both single- and multi-charge ion sources may be developed on basis of such new discharge modes. Such ion sources may have advantages in comparison with conventional ones. The main advantages are the long lifetime due to the absence of filaments and arc spots, high energy and gas efficiency due to high plasma electron temperature. The development of the discharge research and recent results are discussed. |
|||
F-02 | Hollow Cathode E-Gun for EBIS in Charge Breeding Experiment | ion, electron, simulation, cathode | 350 |
|
|||
The charge breeding technique is used for Radioactive Ion Beam (RIB) production in the Isotope Separation On Line (ISOL) method in order of optimizing the reacceleration of the radioactive elements produced by a primary beam in a thick target. In some experiments a continuous RIB of certain energy could be required. The EBIS based charge breeding device cannot reach a real CW operation because the high charge state ions produced are extracted by the same part where the 1+ ions are injected, that is, from the electron collector. In this paper, an hollow cathode e-gun for an EBIS in charge breeding operation has been presented. Furthermore, a preliminary system design to inject the 1+ ions from the cathode part will be also shown. In this way, the ions extraction system, placed in the electron beam collector, can be left only to extract the n+ ions, and then the CW operation, at least in principle, could be reached. |