Paper | Title | Other Keywords | Page |
---|---|---|---|
MO-03 | The RI Beams from the Tokai Radioactive Ion Accelerator Complex (TRIAC) | ion, target, ion-source, ISOL | 1 |
|
|||
Tokai Radioactive Ion Accelerator Complex (TRIAC) is an ISOL-based radioactive nuclear beam (RNB) facility, connected to the ISOL in the tandem accelerator at Tokai site of Japan Atomic Energy Agency (JAEA). At JAEA-tandem accelerator facility, we can produce radioactive nuclei by means of proton induced uranium fission, heavy ion fusion or transfer reaction. Since TRIAC was opened for use in 2005, we have provided RNBs of fission products and 8Li. For the production of 8Li, we chose 13C (7Li, 8Li) neutron transfer reaction by 7Li primary beam and a 99% enriched 13C sintered disk target. The release time of Li ions from the 13C sintered target was measured to be 3.2 s. We are developing the RNB of 9Li (T1/2=178 ms) but the long release time caused a significant loss of the beam intensity. A boron nitride target which has fast release of Li is developed for 9Li beam with intensity of 104 ions/s after separation by JAEA-ISOL. |
|||
|
|||
WE-11 | A High-Performance Electron Beam Ion Source | ion, electron, rfq, injection | 138 |
|
|||
Funding: Work supported under the auspices of the US Department of Energy and the National Aeronautics and Space Administration. At Brookhaven National Laboratory, a high current Electron Beam Ion Source (EBIS) has been developed as part of a new preinjector that is under construction to replace the Tandem Van de Graaffs as the heavy ion preinjector for the RHIC and NASA experimental programs. This preinjector will produce milliampere-level currents of essentially any ion species, with q/A≥ 1/6, in short pulses, for injection into the Booster synchrotron. In order to produce the required intensities, this EBIS uses a 10A electron gun, and an electron collector designed to handle 300 kW of pulsed electron beam power. The EBIS trap region is 1.5 m long, inside a 5T, 2m long, 8” bore superconducting solenoid. The source is designed to switch ion species on a pulse-to-pulse basis, at a 5 Hz repetition rate. Singly-charged ions of the appropriate species, produced external to the EBIS, are injected into the trap and confined until the desired charge state is reached via stepwise ionization by the electron beam. Ions are then extracted and matched into an RFQ, followed by a short IH Linac, for acceleration to 2 MeV/A, prior to injection into the Booster synchrotron. An overview of the preinjector is presented, along with experimental results from the prototype EBIS, where all essential requirements have already been demonstrated. Design features and status of construction of the final high intensity EBIS is also be presented. |
|||
|
|||
TH-04 | Performances of the ISAC Heavy Ion Linacs | ISAC, ion, DTL, TRIUMF | 160 |
|
|||
ISAC is the TRIUMF facility for the production and post acceleration of Rare Isotope Beams (RIBs). The post acceleration section includes two normal conducting linacs, an RFQ injector and a variable energy IH-DTL, and a superconducting linac composed of five cryomodules each containing four quarter wave bulk niobium resonators. All three machines operate CW. The RFQ and DTL deliver beam since 2000 to a medium energy area with energies variable between 150 keV/u and 1.8 MeV/u. The superconducting linac, with an effective voltage of 20 MV started delivering in 2007 with performances exceeding design specifications reaching final energies up to 11 MeV/u for lighter particles. The linac gradients show no average degradation in performance. Well established operational and tuning procedures allow reliable operations. Schemes have been developed to effectively deliver the very low intensity (as low as few hundred particles per second) radioactive ion beams. The superconducting linac will be upgraded with the addition of twenty more cavities (boosting the acceleration voltage to 40 MV) by the end of 2009 making the reliability quest more challenging. In this paper we present past, present and planned operations with the ISAC linacs. |
|||
|
|||
TH-05 | HIE-ISOLDE LINAC: Status of the R&D Activities | cavity, cryomodule, solenoid, vacuum | 165 |
|
|||
For the post-accelerator of radioactive ion beams at CERN a major upgrade is planned to take place in the next 4-5 years. The upgrade consists in boosting the energy of the machine from 3MeV/u up to 10 MeV/u with beams of mass-to-charge ratio 2.5<A/q<4.5 and in replacing part of the existing normal conducting linac. The new accelerator is based on two gap independently phased 101.28 MHz Nb sputtered superconducting Quarter Wave Resonators (QWRs). Two cavity geometries, “low” and “high” β, have been selected for covering the whole energy range. A R&D program has started in 2008 looking at the different aspects of the machine, in particular beam dynamics studies, high β cavity development and cryomodule design. A status report of the different activities is given here. |
|||
|
|||
TH-06 | Development of Heavy Ion Accelerator and Associated Systems | ion, niobium, ECRIS, high-voltage | 170 |
|
|||
A 15 UD Pelletron electrostatic accelerator is in regular operation at Inter-University Accelerator Center (IUAC). It has been providing various ion beams in the energy range from a few tens of MeV to 270MeV for scheduled experiments. A superconducting linac booster module having eight niobium quarter wave resonators has been made operational for boosting the energy of the heavy ion beams from the Pelletron for experiments at higher energies. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRIS) was designed, fabricated and installed. It is in regular operation as a part of an alternate high current injector (HCI) system being developed for injection of highly charged ions having higher beam current in to the superconducting linac. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ~ 6) to an energy of 180 keV/A. The beam will then be accelerated further by drift tube linacs (DTLs) to the required velocity for injection of the beams to the linac booster. Details of various developmental activities related to the heavy ion accelerators and associated systems are reported. |
|||
|
|||
TH-07 | Operational Experience of the Superconducting LINAC Booster at Mumbai | controls, cavity, cryogenics, acceleration | 174 |
|
|||
The superconducting LINAC booster, indigenously developed to boost the energy of the heavy ion beams from the 14 MV Pelletron accelerator at TIFR, Mumbai, has been fully operational since July 2007. The LINAC consists of seven modular cryostats, each housing four lead plated quarter wave resonators, designed for an optimum velocity β0=0.1 at an operating frequency of 150 MHz. In order to maintain a stable phase and amplitude of the electric field in the cavity, the RF controller cards based on a self-excited loop (SEL) with phase and amplitude feedback have been developed indigenously. The cryogenic system for the LINAC has been designed for a typical power dissipation of 6 W in each resonator. Initial beam trials have yielded average energy gain of 0.4 MV/q per cavity corresponding to 80% of the design value. Operational experience of the LINAC, namely, empirically devised procedures for the acceleration of different beams and RF settings, and associated developments are presented. |
|||
|
|||
TH-08 | Multiple Charge State Ion Beam Acceleration with an RFQ LINAC | ion, rfq, space-charge, simulation | 179 |
|
|||
We are investigating space charge dominated beam dynamics in a Radio Frequency Quadrupole (RFQ) linac. In some accelerator systems, desired ions with different charge state ions are simultaneously injected into an RFQ linac. To describe the evolution of the multi charge beam inside the RFQ, we did particle simulation by using Particle-Mesh (PM) method. Here the high-intensity carbon beam made up of C4+, C5+ and C6+ was applied to the simulation (C5+ was set to the designed ion). The space charge contributions to the transverse emittance growth and to the transverse and longitudinal particle motions are presented. |
|||
|
|||
TH-09 | Upgrade of the HIT Injector LINAC-Frontend | rfq, solenoid, simulation, ion | 183 |
|
|||
The Therapy Linac in Heidelberg (HIT) was successfully commissioned in 2006. Required beam parameters were reached except of the beam intensity. The achieved particle transmission for C4+ (design ion) is significantly lower than design. Particle losses are mainly observed in the RFQ. One critical point is the matching section of the RFQ electrodes - Input Radial Matcher (IRM). The original design requires too rigid and narrow beam Twiss-parameters at the RFQ entrance. Also the measured emittance is about twice higher compared to the design. Numerically and experimentally it was proven that the solenoid, used for the beam matching to the RFQ, is not able to provide for the necessary beam size and convergence. As it was shown by beam dynamics simulations using the code DYNAMION, a minor modification of the IRM allows for an improvement of the beam transmission (up to 50%). The proposed measure was realized for an advanced HIT-RFQ-layout, which is recently under test stage. The same modification is already proposed for the linac frontend at Italian Hadrontherapy Center (CNAO, Pavia). |
|||
|
|||
TH-10 | Status of Linac Beam Commissioning for the Italian Hadron Therapy Center CNAO | rfq, emittance, DTL, solenoid | 188 |
|
|||
The CNAO (Centro Nazionale di Adroterapia Oncologica), located in Pavia (Italy), is a dedicated clinical synchrotron facility for cancer therapy using high energy proton and Carbon beams. The 400 MeV/u synchrotron is injected by a 216.8 MHz 7 MeV/u linac composed by a low energy beam transport (fed by two ion sources), a 400 keV/u 4-rod type RFQ and a 20 MV IHDTL. The commissioning of the two ECRIS ion sources and the low-energy line was successfully completed at the end of January 2009 reaching the proper beam conditions for injection into the RFQ. After installation and conditioning, the RFQ was commissioned with beam by the GSI-CNAO-INFN team in March 2009. The beam tests results are presented and compared to the design parameters. |
|||
|
|||
FR-02 | Status of Construction and Commissioning of the GSI HITRAP Decelerator | ion, rfq, bunching, diagnostics | 198 |
|
|||
Funding: Work supported by the BMBF. The GSI accelerator facility provides highly charged ion beams up to U92+ at the energy of 400 MeV/u. These are cooled and decelerated down to 4 MeV/u in the Experimental Storage Ring. Within the Heavy Ion Trap facility HITRAP the ions are decelerated further down. The linear decelerator comprises a 108/216 MHz doubledrift- buncher, a 108 MHz-IH-structure, a spiral-type rebuncher, and an RFQ-decelerator with an integrated debuncher providing energy spread reduction. Finally the beam is injected with the energy of 6 keV/u into a Penning trap for final cooling. The decelerator is installed completely and first sections have been successfully commissioned. For commissioning of the individual sections different ion species, e.g. 64Ni28+, 20Ne10+, 197Au79+ were used. Each section was studied with comprehensive beam diagnostics to measure energy, emittance, intensity, transverse profiles, and bunch structure of the beam. The report gives an overview of the beam dynamics, the decelerator structures, and some results of the different commissioning runs. |
|||
|
|||
FR-03 | Improved on line performance of the installed ALPI Nb sputtered QWRs | cavity, superconductivity, cathode, niobium | 203 |
|
|||
The average accelerating field of the ALPI 160 MHz sputtered QWRs has been improving with time up to reach, after the last conditioning cycle, the average accelerating field of 4.8 MV/m @ 7 W. Such value can be effectively sustained in operation due to the intrinsic mechanical stability of the sputtered cavity whose frequency is practically not influenced by fluctuations in the bath He pressure. The present average cavity performance approaches the maximum average accelerating field obtainable in the presently installed cavities, most of which were produced by replacement of Pb with Nb in the previously installed substrates. A higher average value can be obtained in ALPI replacing the less performing units; it is instead necessary to sputter on appropriately built substrates to produce QWRs which can reliably exceed 6 MV/m @7W. The cavity Q-curves, which were recently measured in ALPI, show a wide range of Q0 and Q-drop, mainly associated with the substrate characteristics, but in some cases also influenced, as discussed in the paper, by cryostat assembling procedures and by cavity production and conditioning. |
|||
|
|||
A-06 | ITEP Heavy Ion RFQ Output Line Upgrade for Experiments of Reactor Material Investigation under Irradiation | ion, target, simulation, rfq | 236 |
|
|||
Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness of reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback, on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in ITEP the ion beam irradiation experiments are under development at the ITEP heavy ion RFQ HIP-1. The main objectives of this work are to study primary damage, cascade formation phenomena, phase stability and self-organization under irradiation. This research is carried out by means of tomographic atom probe and transmission electron microscopy. This linac provides accelerated beams of Cu2+, Fe2+, Cr2+ ions with current up to 10 mA and energy 101 keV/n. The first experiments with ion beam at the linac injector demonstrated promising results. The linac output beam line is now under upgrade. The results of beam extraction line adjustment for experiments with reactor materials are presented. The construction of controllable heated target is presented as well. |
|||
C-05 | Decelerating Heavy Ion Beams Using the ISAC DTL | DTL, ISAC, emittance, simulation | 261 |
|
|||
At the ISAC facility in TRIUMF radioactive ion beams (RIB) are produced using the ISOL method and post accelerated. The post accelerator chain consists of a radio frequency quadrupole (RFQ) injector followed by a drift tube linac (DTL) that accelerates the ions from 150 keV/u up to 1.8 MeV/u. A further stage of acceleration is achieved using a superconducting linac where the beam is injected using the DTL and the energy boosted with 20 MV of acceleration voltage (increased to 40MV by the end of 2009). The possibility of decelerating the beam maintaining good beam quality using the DTL is investigated based on experimenters request to reach energies lower than 150 keV/u. The beam dynamics simulation using the LANA code are compared with on line measurements. In this paper we will report the results of the investigation that aims to establish the lowest energy we can deliver in the post accelerator section of the ISAC facility. |
|||
C-06 | Fabrication of Superconducting Niobium Resonators at IUAC | niobium, vacuum, cavity, cryomodule | 266 |
|
|||
The facility for constructing superconducting niobium resonators indigenously was commissioned at the Inter- University Accelerator Centre in 2002. It was primarily setup to fabricate niobium quarter wave resonators for the superconducting booster linac. Starting with a single quarter wave resonator in the first phase, two completely indigenous resonators were successfully built, tested and installed in the cryomodules. Subsequently production of fifteen more resonators for the second and third modules began. Several existing resonators have been successfully reworked and restored from a variety of problems. In addition to building resonators for the in-house programs, a project to build two single spoke resonators for Project- X at Fermi Lab, USA has also been taken up. A Tesla-type single cell cavity is also being built in collaboration with RRCAT, Indore. This paper presents details of the fabrication, test results and future plans. |
|||
C-07 | Upgrade of the Control System for the ALPI Cryogenic Distribution Plant | controls, cryogenics, vacuum, interlocks | 271 |
|
|||
In the LNL Heavy Ion Accelerator Complex, ALPI is a superconducting linear accelerator (Linac) whose first runs date back to 1993. In more than 15 years the LNL ALPI Linac evolved from an initial small configuration of 5 cryostats and 16 resonators to the actual size of 20 cryostats and 74 resonators. The superconducting character of ALPI implies the availability of a large cryogenic plant and distribution system to supply the liquid helium necessary to keep the resonators at 4.2 K. While the Linac structure has grown in the years and, in the mean time, the related cryogenic plant and distribution systems were enlarged and upgraded twice, the related control system remained largely unchanged in its main parts and it is now the first sub-system that urgently needs a deep renewing. The challenge to renovate a working control system with limited shut-downs is the subject of this presentation. |
|||
G-03 | HEBT Lines for the SPIRAL2 Facility | ion, neutron, target, heavy-ion | 365 |
|
|||
The SPIRAL2 facility at GANIL-Caen is now in its construction phase, with a project group including the participation of many French laboratories (CNRS, CEA) and international partners. The SPIRAL2 facility will be able to produce various accelerated beams at high intensities: 40 MeV Deuterons, 33 MeV Protons with intensity until 5mA and heavy ions with q/A=1/3 up to 14.5MeV/u until 1mA current. We will present the status of the beam dynamics studies recently performed for the high energy beam transport lines of the facility. Various studies were performed on beam-dump concerning beam dynamics, safety and thermo-mechanicals aspects. New experimental areas using stable beams and the cave dedicated to radioactive ion production will be presented according the scientific program. |