Keyword: emittance
Paper Title Other Keywords Page
MOPSA03 Calculations of Ion Dynamics and Elecrodynamics Characteristics of 800 KeV/nucleon RFQ cavity, Windows, rfq, coupling 135
 
  • M.A. Guzov, A.M. Opekunov, L.E. Polyakov, N.V. Zavyalov
    RFNC-VNIIEF, Sarov, Nizhniy Novgorod region, Russia
  • M.A. Guzov, E.N. Indiushnii, Y. Lozeev, A.I. Makarov, S.M. Polozov
    MEPhI, Moscow, Russia
  • M.L. Smetanin, A.V. Telnov
    VNIIEF, Sarov, Russia
 
  Accelerating structure with radio-frequency quadrupole focusing (RFQ) was observed in this research. The RFQ is aimed to bunch up, accelerate and focus 1 MeV/nucleon ions with A/Z from 1 to 3.2 (A - mass number of ion, Z - ion charge). The chemical elements from H⁺ to O5+ fill up this particle types range. The protons current is 2 mA and ion current is 1 mA. In this paper charged particle dynamics calculations, which essential for next electrodynamic cavity modeling, were performed. The electrodynamic model of 4-vane RFQ cavity with windows of magnetic connection was created. The dependence between frequency and cavity geometrics was defined. Topology of magnetic windows, which aimed to have the maximum mod separations, was determined. Different types of tanks were considered and corresponding electromagnetic characteristics were calculated. Tuning elements (plungers and spacers) influence on cavity was modeled. As a result optimized model of accelerating structure was realized.  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-MOPSA03  
About • Received ※ 20 September 2021 — Revised ※ 29 September 2021 — Accepted ※ 07 October 2021 — Issued ※ 18 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPSA11 Room Temperature Folding Segment for a Transfer of Multiple Charge States Uranium Ions Between Sections of Linac-100 linac, simulation, heavy-ion, electron 153
 
  • V.S. Dyubkov
    MEPhI, Moscow, Russia
 
  Beam dynamics simulations results of multiple charge states uranium ions (238U59+,60+,61+) in a transfer line between two LINAC-100 superconducting sections of DERICA project (JINR, Dubna, Russia) are presented. Transfer line is an advanced magnetic optical system and provides beams bending on 180 degrees. Transfer line options are proposed. Parameters of its optic element are chosen so that dispersion function has zero value at the start and end of the channel for transporting the 50 MeV/nucleon ion beams.  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-MOPSA11  
About • Received ※ 28 September 2021 — Accepted ※ 09 October 2021 — Issued ※ 17 October 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPSA23 Machine Learning for the Storage Ring Optimization synchrotron, ion-source, radiation, synchrotron-radiation 169
 
  • Ye. Fomin
    NRC, Moscow, Russia
 
  Funding: The reported study was funded by RFBR, project number 19-29-12039
The design and optimization of new lattice for modern synchrotron radiation sources are for the most part an art and highly dependent on the researcher skills. Since both modern existing and designing storage rings is very complex nonlinear system the researchers spend a lot of effort to solve their problems. In this work the use of machine learning technics to improve the efficiency of solving nonlinear systems optimization problems is considered.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-MOPSA23  
About • Received ※ 06 October 2021 — Accepted ※ 09 October 2021 — Issued ※ 16 October 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPSA51 The Extraction System of DC140 Cyclotron cyclotron, extraction, permanent-magnet, simulation 213
 
  • V.I. Lisov, A.A. Protasov, A.S. Zabanov
    JINR/FLNR, Moscow region, Russia
  • K. Gikal, G.G. Gulbekyan, I.A. Ivanenko, G.N. Ivanov, I.V. Kalagin, N.Yu. Kazarinov, S.V. Mitrofanov, N.F. Osipov, V.A. Semin
    JINR, Dubna, Moscow Region, Russia
 
  The main activities of Flerov Laboratory of Nuclear Reactions, following its name - are related to fundamental science, but, in parallel, plenty of efforts are paid for practical applications. For the moment continues the works under creating irradiation facility based on the cyclotron DC140 which will be dedicated machine for applied researches in FLNR. The beam transport system will have three experimental beam lines for testing of electronic components (avionics and space electronics) for radiation hardness, for ion-implantation nanotechnology and for radiation materials science. The DC140 cyclotron is intended for acceleration of heavy ions with mass-to-charge ratio A/Z within interval from 5 to 8.25 up to two fixed energies 2.124 and 4.8 MeV per unit mass. The intensity of the accelerated ions will be about 1 pmcA for light ions (A<86) and about 0.1 pmcA for heavier ions (A>132). The following elements are used to extract the beam from the cyclotron: electrostatic deflector, focusing magnetic channel, Permanent Magnet Quadrupole lens and steering magnet. The design of the beam extraction system of DC140 cyclotron are presented in this report.  
poster icon Poster MOPSA51 [0.886 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-MOPSA51  
About • Received ※ 30 August 2021 — Accepted ※ 20 September 2021 — Issued ※ 24 October 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPSB16 Calculation and Optimization of High-Energy Beam Transfer Lines by the Monte Carlo Method proton, beam-transport, ion-source, radiation 262
 
  • D.A. Amerkanov, E.M. Ivanov, G.A. Riabov, V.A. Tonkikh
    PNPI, Gatchina, Leningrad District, Russia
 
  The calculation of high-energy beam lines consists of tracing of the proton beam trajectories along the transport channel from the source. The PROTONMK program code was developed to carry out such calculations using the Monte Carlo method. The beam from the accelerator is introduced in the form of a multivariate Gaussian distribution in x,x’,z,z’,dp/p phase space. In the case when an absorber (absorber, air section, window in the channel, etc.) is installed in the transport channel the beam parameters after the absorber are calculated using the GEANT4. The output file of this code can be used as input for the program. The program allows calculation of any beam parameters - intensity, spatial or phase density, energy distribution, etc. The program includes a block for the optimization of beam parameters presented in a functional form. Random search method with learning for search correction based on analysis of intermediate results (so-called statistical gradient method) is used for obtaining the global maximum of a function of many variables. The program has been tested in calculations of the beam transport lines for IC-80 cyclotron and for the development of the beam line for ophthalmology.  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-TUPSB16  
About • Received ※ 21 September 2021 — Revised ※ 22 September 2021 — Accepted ※ 23 September 2021 — Issued ※ 28 September 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPSB26 Lattice Options With Reverse Bending Magnets for USSR HMBA Storage Ring lattice, SRF, synchrotron, storage-ring 280
 
  • V.S. Dyubkov
    MEPhI, Moscow, Russia
  • V.S. Dyubkov, T. Kulevoy
    NRC, Moscow, Russia
  • T. Kulevoy, E.D. Tsyplakov
    ITEP, Moscow, Russia
  • E.D. Tsyplakov
    MIPT, Dolgoprudniy, Moscow Region, Russia
 
  The 4th generation light source, the Ultimate Source of Synchrotron Radiation (USSR) is under design, to be built in Moscow region (Russia). It will be a 6 GeV and about 1100 m circumference storage ring synchrotron. Baseline lattice of the USSR for now is a scaled version of the ESRF-EBS Hybrid Multi-Bend Achromat (HMBA) lattice that was successfully commissioned in 2020. Its natural horizontal electron beam emittance is about 70 pm·rad. Further reduction of beam emittance can be achieved with the use of reverse bending magnets. The evolution of the envisaged lattices for the USSR storage ring, including options with reverse bends will be presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-TUPSB26  
About • Received ※ 24 September 2021 — Revised ※ 25 September 2021 — Accepted ※ 29 September 2021 — Issued ※ 18 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPSC30 Measurement of the Phase Portrait of a 2 MeV Proton Beam Along Beam Transfer Line proton, neutron, target, focusing 399
 
  • T.A. Bykov
    Budker INP & NSU, Novosibirsk, Russia
  • Ia.A. Kolesnikov, S.Yu. Taskaev
    NSU, Novosibirsk, Russia
  • Ia.A. Kolesnikov, I.M. Shchudlo, S.Yu. Taskaev
    BINP SB RAS, Novosibirsk, Russia
  • S. Savinov
    BINP, Novosibirsk, Russia
 
  Funding: The research was supported by Russian Science Foundation, grant No. 19-72-30005.
For the development of boron neutron capture therapy - an accelerator source of epithermal neutrons has been proposed and created at the Budker Institute of Nuclear Physics (Novosibirsk, Russia). For future therapy it is necessary to ensure the transportation of a proton beam in a high-energy beam line at a distance of 10 meters. For this purpose, using a movable diaphragm with a diameter of 1 mm, mounted on a three-dimensional vacuum manipulator, and a wire scanner, the phase portrait of the proton beam was measured. The software for remote control of the movable diaphragm and data processing of the wire scanner was developed. An algorithm for processing a series of measurements was developed to reconstruct the image of the phase portrait of the beam and calculate the emittance. This work describes in detail the features of the measuring devices, control algorithms and data processing. An experiment was carried out to measure the phase portrait and emittance of a proton beam with an energy of 2 MeV and a current of up to 3 mA. A beam of neutral particles was also measured. The effect of a bending magnet on the focusing and emittance of the beam is studied. The invariant normalized emittances calculated from the measured phase portraits make it possible to assert that the beam can be transported over distances of about 10 meters without changes in the current geometry of the high-energy beam line.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-WEPSC30  
About • Received ※ 10 September 2021 — Revised ※ 22 September 2021 — Accepted ※ 23 September 2021 — Issued ※ 11 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPSC50 Enhancement of Transverse Beam Phase Space Analysis by Tomography Method at INR Linac linac, simulation, quadrupole, cavity 433
 
  • A.I. Titov, S. Bragin, S.A. Gavrilov, O. Volodkevich
    RAS/INR, Moscow, Russia
  • S.A. Gavrilov, A.I. Titov
    MIPT, Dolgoprudniy, Moscow Region, Russia
 
  The investigation of transverse beam phase space parameters behavior along the accelerator is important for proper accelerator tuning. At INR RAS linac transverse emittance and Twiss parameters are reconstructed from beam profile measurements with quadrupole scan technique at several measurement points along the accelerator. Profile treatment is performed with ordinary transverse profiles method and tomographic reconstruction method. Various experimental data is presented. The comparison of the results obtained by the two methods is done. Features of beam dynamics simulation based on the data from these methods are discussed.  
poster icon Poster WEPSC50 [6.621 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-WEPSC50  
About • Received ※ 17 September 2021 — Revised ※ 21 September 2021 — Accepted ※ 23 September 2021 — Issued ※ 22 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)