THPOA —  Poster Session (MC2 & MC5)   (13-Oct-16   08:30—12:30)
Paper Title Page
THPOA04 Maximum Brightness of Linac-Driven Electron Beams in the Presence of Collective Effects 1101
 
  • S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Linear accelerators capable of delivering high brightness electron beams are essential components of a number of research tools, such as free electron lasers (FELs) and elementary particle colliders. In these facilities the charge density is high enough to drive undesirable collective effects (wakefields) that may increase the beam emittance relative to the injection level, eventually degrading the nominal brightness. We formulate a limit on the final electron beam brightness, imposed by the interplay of geometric transverse wakefield in accelerating structures and coherent synchrotron radiation in energy dispersive regions*. Numerous experimental data of VUV and X-ray FEL drivers validate our model. This is then used to show that a normalized brightness of 1016 A/m2, promised so far by ultra-low charge beams (1-10 pC), can in fact be reached with a 100 pC charge beam in the Italian FERMI FEL linac, with the existing machine configuration.**
*Physical Review Special Topics - Accelerators And Beams 17, 110702 (2014)
**Physical Review Special Topics - Accelerators And Beams 16, 050701 (2013)
 
poster icon Poster THPOA04 [0.828 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA05 Intrabeam Scattering in High Brightness Electron Linacs 1104
 
  • S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The role played by Intra-Beam Scattering (IBS) in high brightness electron linacs, like those driving free electron lasers, is studied analytically and with particle tracking. We found that IBS typically plays no significant role in the microbunching instability that develops in such accelerators*. A partial damping of the instability through IBS is envisaged, however, with dedicated magnetic insertions. The feasibility of linear and circular lattice designs to cumulate relevant IBS-induced energy spread, and the interplay with microbunching instability, are discussed theoretically, and with the help of tracking codes.
* S. Di Mitri, PRST-AB 17, 074401 (2014)
 
poster icon Poster THPOA05 [0.547 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA06 CSR-Immune Arc Compressors for Recirculating Accelerators Driving High Brightness Electron Beams 1108
 
  • S. Di Mitri, M. Cornacchia
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The advent of short electron bunches in high brightness linear accelerators has raised the awareness of the accelerator community to the degradation of the beam transverse emittance by coherent synchrotron radiation (CSR) emitted in magnetic bunch length compressors, transfer lines and turnaround arcs. We reformulate the concept of CSR-driven beam optics balance, and apply it to the general case of varying bunch length in an achromatic cell*. The dependence of the CSR-perturbed emittance to beam optics, mean energy, and bunch charge is shown. The analytical findings are compared with particle tracking results**. Practical considerations on CSR-induced energy loss and nonlinear particle dynamics are included. As a result, we identify the range of parameters that allows feasibility of an arc compressor in a recirculating accelerator driving, for example, a free electron laser or a linear collider.
*S. Di Mitri and M. Cornacchia, EPL, 109 (2015) 62002
**S. Di Mitri, NIM A 806 (2016) 184'192
 
poster icon Poster THPOA06 [0.616 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA07 Probablistic Estimation of Low Energy Electron Trapping in Quadrupoles 1112
 
  • K.G. Sonnad
    KEK, Ibaraki, Japan
  • J.A. Crittendenpresenter, K.G. Sonnad
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Electron cloud formation in quadrupoles is important for storage rings because they have the potential of being trapped for a time period that exceeds the revolution period of the beam. This can result in a turn by turn build up of cloud, that could potentially interfere with beam motion. The mechanism of electron trapping can be understood based on dynamics associated with the motion of an isolated charged particle in a magnetic field. In such a system, energy is conserved and so is the magnetic moment of the gyrating electron which is an adiabatic invariant. This leads to determination of a so called loss cone in velocity space. Using these principles we describe a method to estimate the probability distribution of trapping across the cross-section of a quadrupole for a given field gradient and electron energy. Such an estimate can serve as a precursor to more detailed numerical studies of electron cloud build and trapping in quadrupoles.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA08 Transformer Ratio Enhancement Experiment Based on Emittance Exchanger in Argonne Wakefield Accelerator 1115
 
  • Q. Gao, H.B. Chen, J. Shi
    TUB, Beijing, People's Republic of China
  • S.P. Antipov
    Euclid Beamlabs LLC, Bolingbrook, USA
  • M.E. Conde, D.S. Doran, W. Gai, W. Liu, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  The transformer ratio is an important figure of merit in collinear wakefield acceleration, it indicates the efficiency of energy transferring from drive bunch to witness bunch. Higher transformer ratio will significantly reduce the length of accelerator thus reducing the cost of accelerator construction. However, for the gaussian bunch, this ratio has its limit of 2. To obtain higher transformer ratio, one possible method is to tailor the beam current profile to specific shapes. One method of beam shaping is based on emittance exchange, which has been demonstrated at the Argonne Wakefield Accelerator. Its principle is to tailor the beam transversely using a mask then exchange the beam's transverse profile and longitudinal profile. In this paper, we describe our efforts to optimize the beamline and mask in order to generate a triangular beam with quadratic head, which has a transformer ratio of 6.4. We also present our design of a dielectric slab based accelerating structure to measure the transformer ratio. Finally, we discuss an experiment for this high transformer ratio at Argonne Wakefield Accelerator Laboratory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA08  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA13 Modeling of Dipole and Quadrupole Fringe-Field Effects for the Advanced Photon Source Upgrade Lattice 1119
 
  • M. Borland, R.R. Lindberg
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice requires shorter and much stronger quadrupole magnets than are present in the existing ring. This results in longitudinal gradient profiles that differ significantly from a hard-edge model. Additionally, the lattice assumes the use of five-segment longitudinal gradient dipoles. Under these circumstances, the effects of fringe fields and detailed field distributions are of interest. We evaluated the effect of soft-edge fringe fields on the linear optics and chromaticity, finding that compensation for these effects is readily accomplished. In addition, we evaluated the reliability of standard methods of simulating hard-edge nonlinear fringe effects in quadrupoles.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA13  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA14 Ion Effects in the APS Particle Accumulator Ring 1123
 
  • J.R. Calvey, K.C. Harkay, C. Yao
    ANL, Argonne, Illinois, USA
 
  Trapped ions in the APS Particle Accumulator Ring (PAR) lead to a positive coherent tune shift in both planes, which increases along the PAR cycle as more ions accumulate. This effect has been studied using an ion simulation code developed at SLAC. After modifying the code to include a realistic vacuum profile, multiple ionization, and the effect of shaking the beam to measure the tune, the simulation agrees well with our measurements. This code has also been used to evaluate the possibility of ion instabilities at the high bunch charge needed for the APS-Upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA14  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA15 Adaptive Space Charge Calculations in MADX-SC 1126
 
  • Y.I. Alexahin, V.V. Kapin, A. Valishev
    Fermilab, Batavia, Illinois, USA
  • F. Schmidt, R. Wasef
    CERN, Geneva, Switzerland
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the U.S. DOE
Since a few years MAD-X allows to simulate beam dynamics with frozen space charge à la Basseti-Erskine. The limitation of simulation with a fixed distribution is somewhat overcome by an adaptive approach that consists of updating the emittances once per turn and by recalculating the Twiss parameters after certain intervals, typically every 1,000 turns to avoid an excessive slowdown of the simulations. The technique has been benchmarked for the PS machines over 800, 000 turns. MADX-SC code developments are being discussed that include the re-introduction of acceleration into MAD-X and more advanced beam σ calculations that will avoid code interruptions for the Twiss parameters calculation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA15  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA16 Gaseous H2-Filled Helical FOFO Snake for Initial 6D Ionization Cooling of Muons 1129
 
  • Y.I. Alexahin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the U.S. DOE
H2 gas-filled channel for 6D ionization cooling of muons is described which consists of periodically inclined solenoids of alternating polarity with 325MHz RF cavities inside them. To provide sufficient longitudinal cooling LiH wedge absorbers are placed at the minima of transverse beta-function between the solenoids. An important feature of such channel (called Helical FOFO snake) is that it can cool simultaneously muons of both signs. Theoretical considerations as well as results of simulations with G4beamline are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA17 Computing Eigen-Emittances from Tracking Data 1132
 
  • Y.I. Alexahin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the U.S. DOE
In a strongly nonlinear system the particle distribution in the phase space may develop long tails which contribution to the covariance (σ) matrix should be suppressed for a correct estimate of the beam emittance. A method is offered based on Gaussian approximation of the original particle distribution in the phase space (Klimontovich distribution) which leads to an equation for the σ matrix which provides efficient suppression of the tails and cannot be obtained by introducing weights. This equation is easily solved by iterations in the multi-dimensional case. It is also shown how the eigen-emittances and coupled optics functions can be retrieved from the σ matrix in a strongly coupled system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA17  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA18 Simulating Batch-on-Batch Slip-Stacking in the Fermilab Recycler Using a New Multiple Interacting Bunch Capability in Synergia 1135
 
  • E.G. Stern, R. Ainsworth, J.F. Amundsonpresenter, Q. Lu
    Fermilab, Batavia, Illinois, USA
 
  Funding: U.S. Department of Energy, contract DE-AC02-07CH11359
The Recycler is an 8 GeV/c proton storage ring at Fermilab. To achieve the 700 MW beam power goals for the NOvA neutrino oscillation experiment, the Recycler accumulates 12 batches of 80-bunch trains from the Booster using slip-stacking. One set of bunch trains are injected into the ring and decelerated, then a second set is injected at the nominal momentum. The trains slip past each other longitudinally due to their momenta difference. We have recently extended the multi-bunch portion of the Synergia beam simulation program to allow co-propagation of bunch trains at different momenta. In doing so, we have expanded the applicability of the massively parallel multi-bunch physics portion of Synergia to include new categories of bunch-bunch interactions. We present results from our first application of these capabilities to batch-on-batch slip stacking in the Recycler.
 
poster icon Poster THPOA18 [2.144 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA18  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA19 Design Considerations for Proposed Fermilab Integrable RCS 1138
 
  • J.S. Eldred, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable RCS (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide a overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA19  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA20 Simulation of Multipacting with Space Charge Effect in PIP-II 650 MHz Cavities 1142
 
  • G.V. Romanov
    Fermilab, Batavia, Illinois, USA
 
  The central element of the Proton Improvement Plan -II at Fermilab is a new 800 MeV superconducting linac, injecting into the existing Booster. Multipacting affects superconducting RF cavities in the entire range from high energy elliptical cavities to coaxial resonators for low-beta part of the linac. The extensive simulations of multipacting in the cavities with updated material properties and comparison of the results with experimental data are routinely performed during electromagnetic design at Fermilab. This work is focused on multipacting study in the low-beta and high-beta 650 MHz elliptical cavities. The new advanced computing capabilities made it possible to take the space charge effect into account in this study. The results of the simulations and new features of multipacting due to the space charge effect are discussed.  
poster icon Poster THPOA20 [3.572 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA20  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA21 Multipacting in HOM Coupler of LCLS-II 1.3 GHz SC Cavity 1146
 
  • G.V. Romanov, T.N. Khabiboulline, A. Lunin
    Fermilab, Batavia, Illinois, USA
 
  During high power tests of the 1.3 GHz LCLS-2 cavity on the test stand at Fermilab an anomalous rise of temperature of the pickup antenna in the higher order mode (HOM) coupler was detected in accelerating gradient range of 5-10 MV/m. It was suggested that the multipacting in the HOM coupler may be a cause of this temperature rise. In this work the suggestion was studied, and the conditions and the location, where multipacting can develop, were found.  
poster icon Poster THPOA21 [4.786 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA21  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA22 Linear Lattice and Trajectory Reconstruction and Correction at FAST Linear Accelerator 1149
 
  • A.L. Romanov, D.R. Edstrom
    Fermilab, Batavia, Illinois, USA
  • A. Halavanau
    Northern Illinois University, DeKalb, Illinois, USA
 
  Low energy part of FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to its magnetic axes. Details of used methods and experimental results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA22  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA23 Adaptive Matching of the IOTA Ring Linear Optics for Space Charge Compensation 1152
 
  • A.L. Romanov, A. Valishev
    Fermilab, Batavia, Illinois, USA
  • D.L. Bruhwiler, N.M. Cook, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be improved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re-matching with full account of space charge in the linear approximation for the case of Fermilab's IOTA ring. The method is based on a search for initial second moments that give closed solution and, at the same time, satisfy predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA23  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA24 Testing of Advanced Technique for Linear Lattice and Closed Orbit Correction by Modeling Its Application for IOTA Ring at Fermilab 1155
 
  • A.L. Romanov
    Fermilab, Batavia, Illinois, USA
 
  Many modern and most future accelerators rely on precise configuration of lattice and trajectory. Integrable Optics Test Accelerator (IOTA) at Fermilab that is coming to final stages of construction will be used to test advanced approaches of control over particles dynamics. Various experiments planned at IOTA require high flexibility of lattice configuration as well as high precision of lattice and closed orbit control. Dense element placement does not allow to have ideal configuration of diagnostics and correctors for all planned experiments. To overcome this limitations advanced method of lattice analysis is proposed that can also be beneficial for other machines. Developed algorithm is based on LOCO approach, extended with various sets of other experimental data, such as dispersion, BPM-to-BPM phase advances, beam shape information from synchrotron light monitors, responses of closed orbit bumps to variations of focusing elements and other. Extensive modeling of corrections for a big number of random seed errors is used to illustrate benefits from developed approach.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA24  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA26 Analysis of the Transport of Muon Polarization for the Fermilab G-2 Muon Experiment 1158
 
  • D. Stratakis, K.E. Badgleypresenter, M.E. Convery, J.P. Morgan, M.J. Syphers, J.C.T. Thangaraj
    Fermilab, Batavia, Illinois, USA
  • J.D. Crnkovic, W. Morse
    BNL, Upton, Long Island, New York, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
The Muon g-2 experiment at Fermilab aims to measure the anomalous magnetic moment of the muon to a precision of 140 ppb ─ a fourfold improvement over the 540 ppb precision obtained in BNL experiment E821. Obtaining this precision requires controlling total systematic errors at the 100 ppb level. One form of systematic error on the measurement of the anomalous magnetic moment occurs when the muon beam injected and stored in the ring has a correlation between the muon's spin direction and its momentum. In this paper, we first analyze the creation and transport of muon polarization from the production target to the Muon g-2 storage ring. Then, we detail the spin-momentum and spin-orbit correlations and estimate their impact on the final measurement. Finally, we outline mitigation strategies that could potentially circumvent this problem.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA26  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA29 PIP-II Transfer Lines Design 1161
 
  • A. Vivoli
    Fermilab, Batavia, Illinois, USA
 
  The U.S. Particle Physics Project Prioritization Panel (P5) report encouraged the realization of Fermilab's Proton Improvement Plan II (PIP-II) to support future neutrino programs in the United States. PIP-II aims at enhancing the capabilities of the Fermilab existing accelerator complex while simultaneously providing a flexible platform for its future upgrades. The central part of PIP-II project is the construction of a new 800 MeV H Superconducting (SC) Linac together with upgrades of the Booster and Main Injector synchrotrons. New transfer lines will also be needed to deliver beam to the downstream accelerators and facilities. In this paper we present the recent development of the design of the transfer lines discussing the principles that guided their design, the constraints and requirements imposed by the existing accelerator complex and the following modifications implemented to comply with a better understanding of the limitations and further requirements that emerged during the development of the project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA29  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA30 SCHARGEV 1.0 - Strong Space Charge Vlasov Solver 1164
 
  • T. Zolkin, A.V. Burov
    Fermilab, Batavia, Illinois, USA
 
  The space charge (SC) is known to be one of the major limitations for the collective transverse beam stability. When space charge is strong, i.e. SC tune shift much greater than synchrotron tune, the problem allows an exact analytical solution. For that practically important case we present a fast and effective Vlasov solver SCHARGEV (Space CHARGE Vlasov) which calculates a complete eigensystem (spatial shapes of modes and frequency spectra) and therefore provides the growth rates and the thresholds of instabilities. SCHARGEV 1.0 includes driving and detuning wake forces, and, any feedback system (damper). In the next version we will include coupled bunch interaction and Landau damping. Numerical examples for FermiLab Recycler and CERN SPS are presented.  
poster icon Poster THPOA30 [1.493 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA30  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA31 Sector Magnets or Transverse Electromagnetic Fields in Cylindrical Coordinates 1167
 
  • T. Zolkin
    Fermilab, Batavia, Illinois, USA
 
  Laplace's equation in normalized cylindrical coordinates is considered for scalar and vector potentials describing electric or magnetic fields with invariance along the azimuthal coordinate (arXiv:1603.03451). A series of special functions are found which when expanded to lowest order in power series in radial and vertical coordinates (rho=1 and y=0) replicate harmonic homogeneous polynomials in two variables. These functions are based on radial harmonics found by Edwin M. McMillan forty years ago. In addition to McMillan's harmonics, a second family of radial harmonics is introduced to provide a symmetric description between electric and magnetic fields and to describe fields and potentials in terms of the same functions. Formulas are provided which relate any transverse fields specified by the coefficients in the power series expansion in radial or vertical planes in cylindrical coordinates with the set of new functions. This result is important for potential theory and for theoretical study, design and proper modeling of sector dipoles, combined function dipoles and any general sector element for accelerator physics and spectrometry.  
poster icon Poster THPOA31 [2.274 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA31  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA32 Sensitivity of the Microbunching Instability to Irregularities in Cathode Current in the LCLS-II Beam Delivery System 1171
 
  • C.E. Mitchell, J. Qiang, M. Venturini
    LBNL, Berkeley, California, USA
  • P. Emma
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by the Office of Science of the U.S. Department of Energy under Contract Numbers DE-AC02-76SF00515, DE-AC02-05CH11231, and the LCLS-II Project.
LCLS-II is a high-repetition rate (1 MHz) Free Electron Laser (FEL) X-ray light source now under construction at SLAC National Accelerator Laboratory. During transport to the FEL undulators, the electron beam is subject to a space charge-driven microbunching instability that can degrade the electron beam quality and lower the FEL performance if left uncontrolled. The present LCLS-II design is well-optimized to control the growth of this instability out of the electron beam shot noise. However, the instability may also be seeded by irregularities in the beam current profile at the cathode (due to non-uniformities in the temporal profile of the photogun drive laser pulse). In this paper, we describe the sensitivity of the microbunching instability to small-amplitude temporal modulations on the emitted beam current profile at the cathode, using high-resolution simulations of the LCLS-II beam delivery system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA32  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA33 A Preliminary Beam Impedance Model of the Advanced Light Source Upgrade at LBL 1174
 
  • S. Persichelli, J.M. Byrdpresenter, S. De Santis, D. Li, T.H. Luo, J.R. Osborn, C.A. Swenson, M. Venturini, Y. Yang
    LBNL, Berkeley, California, USA
 
  The proposed upgrade of the Advanced Light Source (ALS-U) consists of a multi-bend achromat ultralow emittance lattice optimized for the production of diffraction-limited soft x-rays. A narrow-aperture vacuum chamber is a key feature of the new generation of light sources, and can result in a significant increase in the beam impedance, potentially limiting the maximum achievable beam current. While the conceptual design of the vacuum system is still in a very early development stage, this paper presents a preliminary estimate of the beam impedance using a combination of electromagnetic simulations and analytical calculations. We include the impedance of cavities, select vacuum-chamber components and resistive wall in a multi-layered beam chamber with NEG coating.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA33  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA35 Analysis of Microbunching Structures in Transverse and Longitudinal Phase Spaces 1177
SUPO46   use link to see paper's listing under its alternate paper code  
 
  • C.-Y. Tsai
    Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
  • R. Li
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Microbunching instability (MBI) has been a challenging issue in high-brightness electron beam transport for modern accelerators. The existing Vlasov analysis of MBI is based on single-pass configuration*. For multi-pass recirculation or a long beamline, the intuitive argument of quantifying MBI, by successive multiplication of MBI gains, was found to underestimate the effect**. More thorough analyses based on concatenation of gain matrices aimed to combine both density and energy modulations for a general beamline**. Yet, quantification still focuses on characterizing longitudinal phase space; microbunching residing in (x,z) or (x',z) was observed in particle tracking simulation. Inclusion of such cross-plane microbunching structures in Vlasov analysis shall be a crucial step to systematically characterize MBI for a beamline complex in terms of concatenating individual beamline segments. We derived a semi-analytical formulation to include the microbunching structures in longitudinal and transverse phase spaces. Having numerically implemented the generalized formulae, an example lattice*** is studied and reasonable agreement achieved when compared with particle tracking simulation.
* Heifets et al., PRSTAB 5, 064401 (2002), Huang and Kim, PRSTAB 5, 074401 (2002), and Vneturini, PRSTAB 10, 104401 (2007)
** Tsai et al., IPAC'16 (TUPOR020)
*** Di Mitri, PRSTAB 17, 074401 (2014)
 
poster icon Poster THPOA35 [4.710 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA35  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA37 Study of 2D CSR Effects in a Compression Chicane 1181
 
  • C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
 
  The study of coherent synchrotron radiation (CSR) has been an area of great interest because of its negative impact on FEL performance. The modeling of CSR is frequently performed using a 1D approximation*, as 2D and 3D models can become extremely computational intensive. While experimental evidence is lacking in this area most studies show reasonable agreement between 1D and 2D CSR models for beam parameters in existing accelerators. In this work we focus on 2D modeling of CSR in a four­-dipole chicane lattice based on the Jefferson Lab FEL. Comparison is shown between several models and measurement for energy loss due to CSR in the chicane. While good agreement is generally observed we also present investigation of several key differences observed in simulation. In particular, showing how the 1D and 2D CSR models deviate in regards to CSR and beam interaction within the drift spaces of the chicane and the downstream drift at the chicane end.
*E. Saldin, E. Schneidmiller, and M. Yurkov, Nucl. Instr. Meth. A398, 373 (1997).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA37  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA41 Simulations of Hole Injection in Diamond Detectors 1184
 
  • G.I. Bell, D.A. Dimitrov, C.D. Zhou
    Tech-X, Boulder, Colorado, USA
  • I. Ben-Zvi, M. Gaowei, T. Rao, J. Smedley
    BNL, Upton, Long Island, New York, USA
  • E.M. Muller
    SBU, Stony Brook, New York, USA
 
  Funding: This work is supported by the US DOE Office of Science, department of Basic Energy Sciences, under grant DE-SC0007577.
We present simulations of a semiconductor beam detector using the code VSIM. The 3D simulations involve the movement and scattering of electrons and holes in the semiconductor, voltages which may be applied to external contacts, and self-consistent electrostatic fields inside the device. Electrons may experience a Schottky barrier when attempting to move from the semiconductor into a metal contact. The strong field near the contact, due to trapped electrons, can result in hole injection into the semiconductor due to transmission of electrons from the valence band of the semiconductor into the metal contact. Injected holes are transported in the applied field leading to current through the detector. We compare our simulation results with experimental results from a prototype diamond X-ray detector.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA41  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA42 3D Modeling and Simulations of Electron Emission From Photocathodes With Controlled Rough Surfaces 1187
 
  • D.A. Dimitrov, G.I. Bell, D.N. Smithe, C.D. Zhou
    Tech-X, Boulder, Colorado, USA
  • I. Ben-Zvi, J. Smedley
    BNL, Upton, Long Island, New York, USA
  • S.S. Karkare, H.A. Padmore
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the US DOE Office of Science, department of Basic Energy Sciences under grant DE-SC0013190.
Developments in materials design and synthesis have resulted in photocathodes that can have a high quantum efficiency (QE), operate at visible wavelengths, and are robust enough to operate in high electric field gradient photoguns, for application to free electron lasers and in dynamic electron microscopy and diffraction. However, synthesis often results in roughness, ranging from the nano to the microscale. The effect of this roughness in a high gradient accelerator is to produce a small transverse accelerating gradient, which therefore results in emittance growth. Although analytical formulations of the effects of roughness have been developed, a full theoretical model and experimental verification are lacking, and our work aims to bridge this gap. We report results on electron emission modeling and 3D simulations from photocathodes with controlled surface roughness similar to grated surfaces that have been fabricated by nanolithography. The simulations include both charge carrier dynamics in the photocathode material and a general electron emission modeling that includes field enhancement effects at rough surfaces. The models are being implemented in the VSim code.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA42  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA45 Update of the SEY Measurement at Fermilab Main Injector 1190
SUPO19   use link to see paper's listing under its alternate paper code  
 
  • Y. Ji
    IIT, Chicago, Illinois, USA
  • L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois, USA
  • R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  Studies of in-situ Secondary electron yield (SEY) mea- surements of material samples at the Main Injector (MI) beam pipe wall location started in 2013. [2, 3] These studies aimed at understanding how the beam conditioning of differ- ent materials evolve if they function as MI vacuum chamber walls. The engineering run of the SEY measurement test stand was finished in 2014. From 2014 to 2016 the Fermilab accelerator intensity has increased from 24 × 1012 protons to 42 × 1012 protons. The beam conditioning effect on SS316L and TiN coated SS316L has been observed throughout this period. [1] Improvement of the data acquisition procedure and hardware has been performed. A deconditioning pro- cess was observed during the accelerator annual shut down in 2016.  
poster icon Poster THPOA45 [3.113 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA45  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA46 Benchmark of RF Photoinjector and Dipole Using ASTRA, GPT, and OPAL 1194
SUPO31   use link to see paper's listing under its alternate paper code  
 
  • N.R. Neveu
    IIT, Chicago, Illinois, USA
  • A. Adelmann
    PSI, Villigen PSI, Switzerland
  • G. Ha
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • C.J. Metzger-Kraus
    HZB, Berlin, Germany
  • N.R. Neveu, J.G. Power
    ANL, Argonne, Illinois, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S.J. Russell
    LANL, Los Alamos, New Mexico, USA
  • L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: Grant no. DE-SC0015479, and contract No. DE-AC02-06CH11357.
With the rapid improvement in computing resources and codes in recent years, accelerator facilities can now achieve and rely on accurate beam dynamics simulations. These simulations include single particle effects (e.g. particle tracking in a magnetic field) as well as collective effects such as space charge (SC), and coherent synchrotron radiation (CSR). Using portions of the Argonne Wakefield Accelerator (AWA) as the benchmark model, we simulated beam dynamics with three particle tracking codes. The AWA rf photoinjector was benchmarked, primarily to study SC, in ASTRA, GPT, and OPAL-T using a 1 nC beam. A 20° dipole magnet was used to benchmark CSR effects in GPT and OPAL-T by bending a 1nC beam at energies between 2 MeV and 100 MeV. In this paper we present the results, and discuss the similarities and differences between the codes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA46  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA48 Model of Electron Cloud Instability in Fermilab Recycler 1197
 
  • S. A. Antipov
    University of Chicago, Chicago, Illinois, USA
  • A.V. Burov, S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
 
  An electron cloud instability might limit the intensity in the Fermilab Recycler after the PIP-II upgrade. A multibunch instability typically develops in the horizontal plane within a hundred turns and, in certain conditions, leads to beam loss. Recent studies have indicated that the instability is caused by an electron cloud, trapped in the Recycler index dipole magnets. We developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function dipoles. The resulting instability growth rate of about 30 revolutions is consistent with experimental observations and qualitatively agrees with the simulation in the PEI code. The model allows an estimation of the instability rate for the future in-tensity upgrades.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA48  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA49 Electron Cloud Trapping in Recycler Combined Function Dipole Magnets 1200
SUPO06   use link to see paper's listing under its alternate paper code  
 
  • S. A. Antipov
    University of Chicago, Chicago, Illinois, USA
  • S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
 
  Electron cloud can lead to a fast instability in intense proton and positron beams in circular accelerators. In the Fermilab Recycler the electron cloud is confined within its combined function magnets. We show that combined function magnets trap the electron cloud with their magnetic field, present the results of analytical estimates of trapping, and compare them to numerical simulations of electron cloud formation. The electron cloud in a combined function magnet is located at the beam center and up to 1% of the particles can be trapped by its magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a Recycler combined function dipole this multi-turn accumulations allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The multi-turn build-up can be stopped by injection of a single clearing bunch of 1*1010 p at any position in the ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA49  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA50 Development of an Optical Cavity for LCS Sources at the Compact ERL 1204
 
  • T. Akagi, S. Araki, Y. Honda, A. Kosuge, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • R. Hajima, M. Mori, R. Nagai, T. Shizuma
    QST, Tokai, Japan
 
  High-energy photons from the laser Compton scattering (LCS) sources are expected to be applied in various fields in a wide range photon energies from keV to GeV. High-flux and narrow-bandwidth LCS photon beam is realized in an energy recovery linac (ERL). An electron beam of high-average current and small-emittance collides with accumulating laser pulses in an enhancement cavity for generating high-flux LCS photon beam. We have developed the high-finesse bow-tie ring cavity for the LCS experiment at the Compact ERL (cERL) in KEK. In this presentation, we will report the detail of the optical cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA50  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA51 Improvement of X-Ray Generation by Using Laser Compton Scattering in Laser Undulator Compact X-Ray Source(LUCX) 1207
 
  • M.K. Fukuda, S. Araki, Y. Honda, Y. Sumitomo, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • M. Washio
    RISE, Tokyo, Japan
 
  Funding: This work was supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
We have been developing a compact X-ray source based on the laser Compton scattering(LCS) at Laser Undulator Compact X-ray source(LUCX) accelerator in KEK. We have started to take X-ray images such as refraction contrast images and phase contrast imaging with Talbot interferometer. In this accelerator, 6-10keV X-rays are generated by LCS. An electron beam is produced by a 3.6cell RF-gun and accelerated to 18-24MeV by a 12cell accelerating tube. A laser pulse is stored in a 4-mirror planar optical cavity to enhance the power. To increase the flux of LCS X-rays, we perform an optimization of the beam-loading compensation, improvement of the intensity of an electron beam and a laser light at the collision point. We report the result of the X-ray generation in this accelerator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA51  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA52 A Simulation for Bright THz Light Source from Wiggler Radiation at KEK LUCX 1210
 
  • Y. Sumitomo, S. Araki, A. Aryshev, M.K. Fukuda, M. Shevelev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • A. Deshpande
    SAMEER, Mumbai, India
  • N. Terunuma
    Sokendai, Ibaraki, Japan
 
  Funding: This work was supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
We study a bright THz light source generated by a wiggler radiation at KEK LUCX THz experiment, where an injected four pre-micro-bunched electron beam with few hundreds femto-seconds separation plays a crucial role. The energy of pre-bunched beam reaches few MeV at an S-band 3.6 cell RF Gun, and hence the space-charge effect is not negligible. We simulate the beam optics by ASTRA code, a charged beam optics simulator with space-charge effect, and then the resultant particle distribution is passed to GENESIS, a FEL simulator to deal with the wiggler radiation. We also present an experimental result at KEK LUCX. The major advantage of this system is a compactness of total setup that is expected to generate a MW class peak power THz beam by the coherent radiation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA52  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA53 Luminosity Increase in Laser-Compton Scattering by Crab Crossing Method 1213
 
  • Y. Koshiba, D. Igarashi, S. Ota, T. Takahashi, M. Washio
    RISE, Tokyo, Japan
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  In collider experiments such as KEKB, crab crossing method is a promising way to increase the luminosity and KEK (High Energy Accelerator Research Organization) has achieved the luminosity record in 2009. We are planning to apply crab crossing to laser-Compton scattering, which is a collision of electron beam and laser, to gain a higher luminosity leading to a higher brightness X-ray source. It is well known that the collision angle between electron beam and laser affects the luminosity. It is the best when the collision angle is zero, head-on collision, to get a higher luminosity but difficult to construct such system especially when using an optical cavity for laser. Concerning this difficulty, we are planning crab crossing by tilting the electron beam using an rf-deflector. Although crab crossing in laser-Compton scattering has been already proposed*, nowhere has demonstrated yet. We are going to demonstrate and conduct experimental study at our compact accelerator system in Waseda University. In this conference, we will report about our compact accelerator system, laser system for laser-Compton scattering, and expected results of crab crossing laser-Compton scattering.
*V. Alessandro, et al. "Luminosity optimization schemes in Compton experiments based on Fabry-Perot optical resonators." Physical Review Special Topics-Accelerators and Beams 14.3 (2011): 031001.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA53  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA56 Primary Study of the Photocathode Electron Gun With a Cone Cathode and Radial Polarization Laser 1216
 
  • R. Huang, Q.K. Jiapresenter
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: This work is partly supported by the National Nature Science Foundation of China under Grant No. 11375199.
The linearly polarized laser with oblique incidence can achieve a higher quantum efficiency (QE) of metal cathodes than that with the normal incidence, which however requires the wavefront shaping for better performance. To maintain the high QE and simplify the system, we propose a cone cathode electron gun with a radial polarization laser at normal incidence. The primary analytical estimation and numerical simulations are explored for its effect on the emittance of the electron beam.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA56  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA58 Multiple Bunch Length Operation Mode Design at HLS-II Storage Ring 1220
 
  • W.W. Gao
    Fujian University of Technology, Fuzhou, People's Republic of China
  • W. Lipresenter, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: * Project supported by the National Natural Science Foundation of China (Grant No.11305170)
In this paper we design a simultaneous three bunch length operating mode at the HLS-II (Hefei Light Source II) storage ring by installing two harmonic cavities and minimizing the momentum compaction factor. The short bunches (2.6 mm) presented in this work will meet the requirement of coherent THz radiation experiments, and the long bunches (20 mm) will efficiently increase the total beam current. Therefore, this multiple-bunch-length operating mode allows present synchrotron users and THz users to carry out their experiments simultaneously. Also we analyzed the physical properties such as the CSR effect, RF jitter and Touschek lifetime of this operating mode.
 
poster icon Poster THPOA58 [0.611 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA58  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA60 Status of PLSII Operation 1223
 
  • T.-Y. Lee
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  As the upgrade of PLS, PLSII is a 3 GeV light source in 12 super-periods (281.8 m circumference) with 5.8 nm design emittance and can store electron beam up to 400 mA with 3 superconducting RF cavities. Its most unique characteristic is that it has a short straight section and a long straight section for each cell (24 straight sections) and up to 20 insertion devices can be installed. But, as the installed insertion devices, particularly in-vacuum insertion devices, are sources of high impedance, these are quite challenging for high current operation. Current status of PLSII operation and future plans are described in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA60  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA61 A Possible Emittance Reduction Scheme for PLSII 1226
 
  • T.-Y. Lee
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  As the upgrade of PLS, PLSII is a 3 GeV light source in 12 super-periods (281.8 m circumference) with 5.8 nm design emittance and can store electron beam up to 400 mA with 3 superconducting RF cavities. PLSII lattice is a double bend achromatic (DBA) lattice with 2 straight sections for each cell (24 straight sections). After comple-tion of PLSII, multi-bend achromatic lattice has widely been adopted to accomplish low emittance. This paper discusses how a minimal change can modify the PLSII's DBA to a quadruple bend achromatic (QBA) lattice and reduce the emittance to about a half value.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA61  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA62 Clearing Magnet Design for APS-U 1228
 
  • M. Abliz, J.H. Grimmer, Y. Jaski, M. Ramanathan, F. Westferro
    ANL, Argonne, Illinois, USA
 
  Abstract Advanced Photon Source is in the process of developing an upgrade of the storage ring. The Upgrade will be converting the current double bend lattice to a multi-bend lattice (MBA). In addition, the storage ring will be operated at 6 GeV and 200 mA with regular swap-out injection to keep the stored beam current constant. The swap-out injection will take place with beamline shutters open. For radiation safety to ensure that no electrons can exit the storage ring, a passive method of protecting the beamline and containing the electrons inside the storage ring tunnel is proposed. A clearing magnet will be located in all beamline front ends inside the storage ring tunnel. This article will discuss the principle, design and mechanical design of the clearing magnet scheme for the APS-Upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA62  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA63 Septum Magnet Design for APS-U 1231
 
  • M. Abliz, M. Borland, H. Cease, G. Decker, M.S. Jaski, J.S. Kerby, U. Wienands, A. Xiao
    ANL, Argonne, Illinois, USA
 
  Funding: * Work supported by the U. S. Department of Energy, Office of Science, under Contract No. DE AC02 06CH11357
The Advanced Photon Source is in the process of developing an upgrade (APS-U) of the storage ring from a double-bend to a multi-bend lattice. A swap-out injection is planned for the APS-U lattice to keep a constant beam current and accommodate small, dynamic aperture. A septum magnet that has a minimum thickness of 2 mm with an injection field of 1.06 T has been designed. The stored beam chamber has an 8 mm x 6 mm super-ellipsoidal aperture. The required total deflecting angle is 89 mrad with a ring energy of 6 GeV. The magnet is straight, but is tilted in yaw, roll, and pitch from the stored beam chamber in order to meet the swap out injection requirements for the APS-U lattice. In order to minimize the leakage field inside the stored beam chamber, four different techniques were utilized in the design. As a result, the horizontal deflecting angle of the stored beam was held to only 5 μrad, and the integrated skew quadrupole inside the stored beam chamber was held to 0.09 T. The detailed techniques that were applied to the design, the field multipoles, and the resulting trajectories of the injected and stored beams are reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA63  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA64 MAX IV Storage Ring Magnet Installation Procedure 1234
 
  • K. Åhnberg, M.A.G. Johansson, P.F. Tavares, L. Thånell
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV facility consists of a 3 GeV storage ring, a 1.5 GeV storage ring and a full energy injector linac. The storage ring magnets are based on an integrated "magnet block" concept. Each magnet block holds several consecutive magnet elements. The 3 GeV ring consists of 140 magnet blocks and 1.5 GeV ring has 12 magnet blocks. During the installation, procedures were developed to guarantee block straightness. This article discusses the installation procedure from a mechanical point of view and presents measurement data of block straightness and ring performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA64  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA65 Double Triple Bend Achromat for Next Generation 3 GeV Light Sources 1237
 
  • A. Alekou, R. Bartolini
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • A. Alekou, R. Bartolini
    JAI, Oxford, United Kingdom
  • A. Alekou, R. Bartolini, T. Pulampong, R.P. Walker
    DLS, Oxfordshire, United Kingdom
  • N. Carmignani, S.M. Liuzzo, P. Raimondi
    ESRF, Grenoble, France
 
  The Double Triple Bend Achromat (DTBA) is a newly designed cell for a next generation 3 GeV synchrotron light source. DTBA is inspired by the Double-Double Bend Achromat (DDBA) cell designed for Diamond and originates from a modification of the ESRF HMBA 6 GeV cell, combining in this way the best characteristics of each lattice. The lattice achieves a natural emittance as low as 131 pm, together with a sufficient Dynamic Aperture (DA) for injection and lifetime. Two cells are designed with different end-drift lengths providing two different Long Straight Sections (LSS) for insertion devices, 5 and 7.5 m long, in addition to a new middle-straight section of 3 m. The characteristics of the lattice together with the results on emittance, DA and Touschek lifetime are presented after extensive linear and non-linear optimisations, with and without the presence of errors and corrections.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA65  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA68 The First Particle-Based Proof of Principle Numerical Simulation of Electron Cooling 1241
 
  • S. Abeyratne, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois, USA
 
  Envisioned particle accelerators such as JLEIC demand unprecedented luminosities of 1034 cm -2 s -1 and small emittances are key to achieve them. Electron cooling, where a 'cold' electron beam and the 'hot' proton or ion beam co-propagate in the cooling section of the accelerator, can be used to reduce the emittance growth. It is required to precisely calculate the cooling force among particles to estimate accurately the cooling time. There are different methods to simulate electron cooling. We have developed a novel code, Particles' High-order Adaptive Dynamics (PHAD), for electron cooling. This code differs from other established methods since it is the first particle-based simulation method employing full particle nonlinear dynamics. In this paper we present the first results obtained that establish electron cooling of heavy ions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA68  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA69 Evolution of the Design of the Magnet Structure for the APS Planar Superconducting Undulators 1245
 
  • E. Trakhtenberg, Y. Ivanyushenkov, M. Kasa
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357
Abstract A number of superconducting planar undulators (SCU) with different pole gaps and periods were designed, manufactured, and successfully operated at the Advanced Photon Source (APS) storage ring. A key component of the project is the precision machining of the magnet structure and the precision of the coil winding. The design of the magnet core had a number of modifications during the evolution of the design in order to achieve the best magnetic performance. The current design of the magnet structure is based on the assembled jaws with individual poles, while previous designs utilized solid cores with machined coil grooves. The winding procedure also changed from the first test cores to the current final design. Details of the magnet structure's design, manufacturing, winding and jaw assembly, and changes made from the first prototype system to the production unit, are presented.
[1] Status of the First Planar Superconducting Undulator for the Advanced Photon Source, Y. Ivanyushenkov, E.M. Trakhtenberg et al., Proc. in IPAC-2012, New Orleans, May 2012.
 
poster icon Poster THPOA69 [1.287 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA69  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)