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SCHARGEV 1.0 - Strong Space Charge Vlasov Solver [THPOA30]

The space charge (SC) is known to be one of the major limitations for the col-
lective transverse beam stability. When space charge is strong (SSC), i.e. space
charge tune shift > synchrotron tune (), the problem allows an exact analytical
solution. For that practically important case we present a fast and effective Vlasov
solver SCHARGEV 1.0 (Space CHARGE Viasov) which calculates a complete eigen-
system (spatial shapes of modes and frequency spectra) and therefore provides
the growth rates and the thresholds of instabilities. SCHARGEV 1.0 includes driv-
ing and detuning wake forces, and, any feedback system (damper). In the next
version we will include coupled bunch interaction and Landau damping. Numetri-
cal examples for FermiLab Recycler and CERN SPS are presented.

SSC harmonics for a bunch with longitudinal distribution function f(7,v), where 7
is measured in radians, satisfy
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The modified dynamic equation including the wake and the damper is
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where the operators of wake forces are defined in terms of driving and detuning
wakes, and damper is defined through the pickup P(7) and kicker K (7) functions
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ro — classical radius of the beam particle

R, — average accelerator ring radius

Ny — number of particles per bunch

()3 — bare betatron tune

¢ = —¢/n— where ¢ is chromaticity and n =+, — v ? is slippage factor
g and iy — dimensionless gain and damper’s phase respectively
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Expansion over SSC harmonics );(7) Y;(7) gives the eigenvalue problem
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Longitudinal phase-space models: Gaussian and Hoffman-Pedersen distributions
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Eigenproblems for SSC harmonics (7 in units of [a], v in units of [Q%/ Qes(0)])
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Dipole moments characterize contribution of the specific harmonic to the motion
of a total center of mass. As functions of head-tail phase they are
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When damper sees the center of mass of an individual bunch and applies a dipole
kick uniformly along its length, it can be taken into account as a matrix of direct
product of dipole moments
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SCHARGEV’s default library includes resistive wall and broad-band resonator wake
fields, and, model constant and oscillating wakes.
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Arbitrary wake field can be used for construction of matrix elements
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where

/ D(t — o) p(o) do — is the quadrupole wake field along the bunch

) =1 / W(r)e '“Tdr —is the transverse impedance.

Without damper when ¢ # 0 the beam is r
unstable for all values of ;.. Anh example
of modeling of coherent growth rates as
functions of the head-tail phase for sin-
gle parabolic bunch in CERN SPS ring is
presented to the right. It looks like one
should operate an accelerator at ( < 0
when below the transition energy (and
¢ > 0 above the transition) in order to
minimize the most unstable growth rate.
At the same time an opposite to conven-
tional sign of chromaticity has a hidden
advantage: for small values of |(| the only
unstable mode is 0-th. This rather gen-
eral case gives a hope that the use of re-
sistive damper will help to stabilize the
beam since 0-th mode is visible well (see
[4] for more details).
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Left figure shows another example: sin-
gle Gaussian bunch in FNAL Recycler
(resistive wall wake). Now the only
growth rate of the most unstable mode
as a function of the head-tail phase and
gain of resistive damper is plotted. As
has been expected for 0 < ¢ < 1 and
g ~ 1 there is a “Lake of Stability” where
all modes have negative growth rates [4].
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