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Abstract

Electron cloud formation in quadrupoles is important for
storage rings because they have the potential of being trapped
for a time period that exceeds the revolution period of the
beam. This can result in a turn by turn build up of cloud, that
could potentially interfere with beam motion. Using the the-
ory on the motion of particles in nonuniform magnetic fields,
we describe a method to estimate the probability distribution
of trapping across the cross-section of a quadrupole for a
given field gradient and electron energy. Such an estimate
can serve as a precursor to more detailed numerical studies
of electron cloud build and trapping in quadrupoles.

INTRODUCTION

The trapping of electrons in quadrupoles has been ob-
served in positron as well as proton rings [1, 2]. Calculation
of trajectories of single electrons in quadrpoles has shown
that they can indeed remain trapped indefinitely provided
certain initial conditions are satisfied. [3, 4]. The motion
of a charged particle travelling in a non-uniform magnetic
field is said to be adiabatic if the condition |∇B |/B |rc << 1,
where B is the magnitude of the magnetic field and rc is
the cyclotron radius corresponding to this magnetic field.
Under these conditions, the magnetic moment given by
µ = mv2

⊥/2B is an adiabatic invariant and is a conserved
quantity, where v⊥ is the component of the velocity perpen-
dicular to the magnetic field. The energy E = 1/2m(v2

⊥+v
2
‖)

is always a conserved quantity. As the particle migrates to a
region of higher magnetic field, the parallel component of
the velocity v‖ reduces and a point may reach when it goes
to zero, in which case the particle reverses its path. Based
on this phenomenon, one can specify a so called loss cone
drawn in velocity space. The axis of the cone is along v‖ . It
can then be shown (see for example Ref [5]) that the angle
of this cone θc satisfies sin2 θc = B0/Be, where B0 is the
magnitude of the magnetic field at the initial point, and Be

corresponds to the field at the escape point, along the field
line. If at the initial point, the particle lies outside the loss
cone, it would reverse its path before reaching the escape
point. Due to the symmetry in a quadrupole field pattern,
it is guaranteed that two such “mirror" points occur along
a field line, between which a particle may remain trapped.
For trapping to occur, it is sufficient for two conditions to be
satisfied. (1) The motion needs to remain adiabatic all along
the field line, and (2) the particle needs to lie outside the
loss cone at the given point on the field line. Reference [3]
studied the nature of the particle trajectories and their escape
when either conditions (1) or (2) were individually violated.

METHOD OF COMPUTING THE
TRAPPING PROBABILITY

If the magnetic moment µ = mv2
⊥/2B is conserved, then

the perpendicular velocity of a particle travelling from point
1 to 2 can be traced, and is given by

v⊥(2) = v⊥(1)
(

B(2)
B(1)

)1/2
(1)

For a quadrupole field, the magnetic field is given by Bx =

ky, By = k x, or |∇B | = k. Thus, condition for adiabatic
motion to exist is

rc |∇B |
B

=
v⊥mk
eB2 � 1 (2)

If the angle made by the particle with respect to the “perpen-
dicular" direction is φ, then we have

v⊥ = v cos(φ) (3)

For a particle to remain trapped, it is necessary that the mo-
tion remains adiabatic all along the field line. It is sufficient
for this condition to satisfy if the motion is adiabatic at the
point where the magnitude of magnetic field is a minimum.
Using this, the condition for adiabatic motion to sustain
along a field line may be obtained by combining equation
(1) and (2). This is

v cos(φ)mk

eB1/2
o B3/2

min

� 1 (4)

Where Bo is field at the reference point, and Bmin is the
minimum field value along that field line. While there is
no rule that demarcates between adiabatic and nonadibatic
motion, it would be reasonable for our purposes to make an
assumption that the motion is adiabatic if the left side is less
than a predefined empirical parameter η << 1. With this,
Eq(4) will lead to the condition

cos(φ) <
ηeB1/2

o B3/2
min

mvk
(5)

We will now define another cone in velocity space whose
axis is parallel to v⊥, with angle φa, such that for all points
lying inside this cone, the above condition is violated. Under
our assumptions, these points correspond to cases where the
particle motion will eventually cease to remain adiabatic.
This gives us,

cos(φa) =
{
ηeB

1/2
0 B

3/2
min

mvk , if ≤ 1
0, otherwise

(6)
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Figure 1 shows the three regions in velocity space a par-
ticle may belong to. The regions are three dimensional
with conical boundaries, while the figure is a projection
on to a plane. For particles with an isotropic velocity dis-
tribution, and given energy, the probability of trapping is
the fractional solid angle covered by the shaded region.
There are three cases that need to be considered. (1) If
cos(φa) = 1, the motion is adiabatic everywhere, and the
trapping probability is cos(θc). (2) If θc + φa ≥ π/2, the re-
gion of trapping does not exist, and the trapping probability
is zero. (3) If θc + φa < π/2 then the trapping probability
is cos(θc) − sin(θa). These values can easily be obtained
by working out the fractional solid angles covered by the
respective regions.

Figure 1: Regions in velocity space that will determine the
nature of the particle trajectory.

The procedure to carry out the computation is as follows.
The cross-section of the quadrupole region is divided into
a grid. The magnetic field line passing through each point,
lying at the center of the grid cell is traced. The tracing can
be done using the method of direction cosines, where for
a give step size ∆s along the field line, the corresponding
steps ∆x and ∆y are given by

∆x =
Bx

B
∆s ∆y =

By

B
∆s (7)

In the process of scanning the whole field line between the
two escape points, the values of the field at the escape point
Be as well as the minimum field value Bmin are recorded. As
long as the quadrupole chamber cross-section geometry is
symmetric about the field pattern, the value of the two escape
points are equal. If this is not the case, the smaller value
between the two needs to be recorded. Using the formulation
described in this paper, the values of sin(θc) and cos(φa)
are computed. The trapping probability corresponding to
the point of interest may then be computed based on the
values of θc and φa and the procedure described in this
section. The parameter η needs to be just sufficiently less
than 1 so that higher order terms in η can be disregarded.
Our computations showed that a change in this value within
a range of 0.1-0.3 would only slightly alter the boundary that
surrounds the so called "escape zone" described later in the
paper.

COMPUTATIONS FOR VARYING
ENERGIES AND FIELD GRADIENTS

In this paper, this computational procedure is applied to
the quadrupole magnets within the sections which have a
circular cross-section in the Cornell Electron-Positron Stor-
age Ring (CESR). The radius of the cross-section is 4.45 cm.
The field gradient k of these quadrupoles is 7.3 T/m, while
we use other values of k as well in order to study the de-
pendence of trapping probability with field strength. In all
our computations, we set the the grid cell size such that the
radius along the vertical and horizontal axis get divided into
600 points, resulting in a total of 31205 cells. The step size
along the field line ∆s used here was 4.45 × 10−2 cm. The
parameter η was set to 0.1, which seemed reasonable based
on repeating certain calculations with varying values of η.

Figure 2: A map of the trapping probability for 100 eV
electrons, k = 7.3 T/m (top), 1 KeV electrons k = 7.3 T/m
(middle), 100 eV electrons, k = 2.5 T/m (bottom).
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Figure 2 shows the results of the computation carried
out for three cases. Due to the symmetry in the field and
cross-section, it is sufficient to show one quadrant of the
cross-section. The figure shows a clear region along the 45o
line from the center, where the particles have no chance of
being trapped. This region, which we refer to as an "escape
zone", have field lines that pass very close to the center,
where the magnitude of the field approaches zero. This
corresponds to large values of φa. When the field magnitude
diminishes, particles are expected to lose adibaticity and the
motion becomes irregular. With irregular motion, particles
will enter the loss cone at some instance of their wandering
and eventually escape. Such a case has been computed and
clearly illustrated in [3]. The figures also show how the
"escape zone" becomes wider with either increasing energy,
or decreasing field.

Table 1 provides the values of the probabilities integrated
over the cross-section of the chamber. The calculations were
performed for varying electron energies and field gradients.
These values represent the overall fraction of trapped par-
ticles for an initial particle distribution, that is uniform in
position space and isotropic in velocity space.

Table 1: Probabilities Integrated over the Cross-section

10 T/m 7.5 T/m 2.5 T/m

10 eV 0.5147 0.50828 0.48963
100 eV 0.4878 0.47012 0.42253
1 KeV 0.4178 0.37447 0.26881

The calculations made in this paper disregard certain ef-
fects. These include the finite length of the quadrupole seg-
ment and the consequences of longitudinal drift of the parti-
cles. Space charge effects and effects of the beam passage are
not accounted for. In addition, the initial distribution need
not be uniform in position and isotropic in velocity. Also,
the choice of the parameter η introduces a degree of uncer-
tainty. On the other hand, it has been shown [3,4] that escape
of particles from longitudinal drift is not likely within one
beam revolution period for typical energies (1̃00eV). One
can expect that space charge will not be significant once
sufficient number of particles escape and the particle density
tapers down. Changing η within a reasonable range only
slightly altered the boundaries of the escape zone. A direct
comparison between the results of this paper and a full build
up and PIC simulation is not possible. However the calcula-
tions of this paper provide useful insight on the underlying
physics not apparent in the full build up simulations.

UPCOMING EXPERIMENTS
The CESR Test Accelerator project [6] has installed a

purpose-built quadrupole magnet and instrumented vacuum
chamber [7] for measurements of electron cloud trapping to
be performed during the December, 2016, running period.
Following up on its initial observation of cloud trapping
in a positron storage ring of 2013/4 [1], this addition of a

56-cm-long magnet adjacent to one of the original CESR
quadrupoles of the same length will enable measurements
of cloud trapping as a function of field gradient by compen-
sating one field with the other. The 2013/4 measurements
were made at a field gradient of 7.3 T/m, finding a long-term
trapping fraction of about 7%. The new configuration will
permit measurements up to a field strength of 3.5 T/m. Nu-
merical PIC simulations tuned to the previous measurements
predict a remarkably strong dependence of trapping fraction
on field strength, finding maximum trapping of more than
30% at a field gradient near 1 T/m [8]. The vacuum chamber
is instrumented with time-resolving electron detectors of the
type used for the measurements of Ref. [1], but with triple
the azimuthal coverage, as well as with a microwave pickup
geometry which will allow cross-calibration of the electron
collection and frequency-shift methods of cloud detection.

REFERENCES
[1] M.G. Billing, J. Conway, E.E. Cowan, J.A. Crittenden, W.

Hartung, J. Lanzoni, Y. Li, C.S. Shill, J.P. Sikora, and K.G.
Sonnad, “Measurement of electron trapping in the Cornell
Electron Storage Ring," Phys. Rev. ST Accel. Beams, vol. 18,
p. 041001.

[2] R.J. Macek, A.A. Browman, J.E. Ledford, M.J. Borden, J.F.
O’Hara, R.C. McCrady, L.J. Rybarcyk, T. Spickermann,
T.J. Zaugg, and M.T.F. Pivi, “Electron cloud generation and
trapping in a quadrupole magnet at the Los Alamos proton
storage ring," Phys. Rev. ST Accel. Beams, vol. 11, p. 010101,
2008.

[3] E.E. Cowan, K.G. Sonnad, and S. Veitzer, “Trajectories of low
energy electrons in particle accelerator magnetic structures," in
Proc. of the 25th Particle Accelerator Conference (PAC-2013),
Pasadena, CA, 2013, p. 475.

[4] L.F. Wang, H. Fukuma, S. Kurokawa, and K. Oide, “Pho-
toelectron trapping in quadrupole and sextupole magnetic
fields", Phys. Rev. E, vol. 66, p. 036502, 2002.

[5] F.F. Chen, “Introduction to Plasma Physics and Controlled
Fusion," 2nd ed., Vol. 1: Plasma Physics: Plenum Press, New
York, 1984.

[6] G.F. Dugan, M.A. Palmer & D.L. Rubin, “ILC Damping
Rings R&D at CesrTA,” ICFA Beam Dynamics Newsletter,
J. Urakawa, Ed., International Committee on Future Accelera-
tors, No. 50, p. 11–33, Dec. 2009.

[7] J. P. Sikora et al., “Design of an Electron Cloud Detector
in a Quadrupole Magnet at CESRTA,” in Proc. of the 5th
International Beam Instrumentation Conference (IBIC 2016),
Barcelona, Spain, 2016, paper WEPG35.

[8] J. Crittenden et al., “Progress in Detector Design and
Installation for Measurements of Electron Cloud Trapping in
Quadrupole Magnetic Fields at CesrTA,” in Proc. of the 7th
International Particle Accelerator Conference (IPAC2016),
Busan, Korea, 2016, paper WEPMW004.

THPOA07 Proceedings of NAPAC2016, Chicago, IL, USA ISBN 978-3-95450-180-9

1114Co
py

rig
ht

©
20

16
CC

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

5: Beam Dynamics and EM Fields
D03 - Calculations of EM fields - Theory and Code Developments


