WEPAK —  MC6 Poster Session   (02-May-18   09:00—12:00)
Paper Title Page
WEPAK001 Intense Neutrino Source Front End Beam Diagnostics System R&D 2077
 
  • K. Yonehara, M.D. Balcazar, A. Moretti, A.V. Tollestrup, A.C. Watts, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • M.A. Cummings, A. Dudas, R.P. Johnson, G.M. Kazakevich, M.L. Neubauer
    Muons, Inc, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795.
We overview the front end beam di­ag­nos­tic sys­tem R&D to pre­pare op­er­a­tion of a multi-MW pro­ton beam for in­ten­sity fron­tier Neu­trino ex­per­i­ments. One of crit­i­cal is­sues is shorter life time of a de­tec­tor with higher beam in­ten­sity due to ra­di­a­tion dam­age. We show a pos­si­ble im­prove­ment of the ex­ist­ing ion cham­ber based de­tec­tor, and a study of a con­cep­tu­ally new ra­di­a­tion-ro­bust de­tec­tor which is based on a gas-filled RF res­onator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK003 Effect of Model Errors on the Closed Orbit Correction at the SIS18 Synchrotron of GSI 2080
SUSPL057   use link to see paper's listing under its alternate paper code  
 
  • S.H. Mirza, P. Forck, H. Klingbeil, R. Singhpresenter
    GSI, Darmstadt, Germany
  • H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: Deutscher Akademischer Austauschdienst under contract No. 91605207
A fast closed orbit feed­back sys­tem (band­width in the order of 1 kHz) is under de­vel­op­ment at the GSI SIS18 syn­chro­tron for the orbit cor­rec­tion from in­jec­tion to ex­trac­tion in­clud­ing the ac­cel­er­a­tion ramp. The sta­tic process model, rep­re­sented as the orbit re­sponse ma­trix (ORM), is sub­jected to the sys­tem­atic op­tics changes dur­ing ramp e.g. beta func­tion and phase ad­vance vari­a­tions at the lo­ca­tions of BPMs and steer­ers. In ad­di­tion to these sys­tem­atic vari­a­tions, model mis­matches may arise from di­pole and quadru­pole mag­net er­rors, space charge de­pen­dent tune shift as well as BPM and steerer cal­i­bra­tion er­rors. In this con­tri­bu­tion, the ef­fects of these model er­rors on the closed orbit cor­rec­tion are in­ves­ti­gated which is nec­es­sary for the ro­bust sta­bil­ity analy­sis of the feed­back con­troller. For the ro­bust­ness tests, the tra­di­tional SVD-based ma­trix pseudo-in­ver­sion is com­pared to a Fourier-based analy­sis. The re­sults are achieved by de­tailed sim­u­la­tions in MADX.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK004 Beam Instrumentation for CRYRING@ESR 2084
 
  • A. Reiter, C. Andre, H. Bräuning, C. Dorn, P. Forck, R. Haseitl, T. Hoffmann, W. Kaufmann, N. Kotovski, P. Kowina, K. Lang, R. Lonsing, P.B. Miedzik, T. Milosic, A. Petit, H. Reeg, C. Schmidt, M. Schwickert, T. Sieber, R. Singh, G. Vorobjev, B. Walasek-Höhne, M. Witthaus
    GSI, Darmstadt, Germany
 
  We pre­sent the beam in­stru­men­ta­tion of CRYRING@​ESR, a low-en­ergy ex­per­i­ment fa­cil­ity at the GSI Helmholtz-Cen­tre for heavy ion re­search. The 1.44 Tm syn­chro­tron and stor­age ring, for­merly hosted at the Manne Sieg­bahn lab­o­ra­tory in Stock­holm, Swe­den, was mod­i­fied in its con­fig­u­ra­tion and in­stalled be­hind the ex­ist­ing ESR, the ex­per­i­men­tal stor­age ring. As the first ma­chine within the on­go­ing FAIR pro­ject, the fa­cil­ity for an­tipro­ton and ion re­search, it is built on the fu­ture tim­ing sys­tem and frame­works for data sup­ply and ac­qui­si­tion. Through­out the past year CRYRING was com­mis­sioned in­clud­ing its elec­tron cooler with hy­dro­gen beams from the local lin­ear ac­cel­er­a­tor. Stor­age, ac­cel­er­a­tion and cool­ing have been demon­strated. The con­tri­bu­tion pro­vides an overview of the beam in­stru­men­ta­tion. The de­sign of the de­tec­tor sys­tems and their cur­rent per­for­mance are pre­sented. Em­pha­sis is given to beam po­si­tion mon­i­tors, de­tec­tors for in­ten­sity mea­sure­ments, and the ion­iza­tion pro­file mon­i­tors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK005 A Cryogenic Current Comparators (CCC) Customized for FAIR-Project 2088
SUSPF098   use link to see paper's listing under its alternate paper code  
 
  • J. Golm, R. Neubert, F. Schmidl, P. Seidel
    FSU Jena, Jena, Germany
  • J. Golm, T. Stöhlker, V. Tympel
    HIJ, Jena, Germany
  • D.M. Haider, F. Kurian, M. Schwickert, T. Sieber, T. Stöhlker
    GSI, Darmstadt, Germany
  • R. Neubert
    Thuringia Observatory Tautenburg, Tautenburg, Germany
  • M. Schmelz, R. Stolz
    IPHT, Jena, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • V. Zakosarenko
    Supracon AG, Jena, Germany
 
  The prin­ci­ple of non-de­struc­tive mea­sure­ment of ion beams by de­tec­tion of the az­imuthal mag­netic field, using low tem­per­a­ture Su­per­con­duct­ing Quan­tum In­ter­fer­ence De­vice (SQUID) sen­sors, has been es­tab­lished at GSI al­ready in the mid 90's. After more re­cent de­vel­op­ments at Jena, GSI and CERN, a CCC was in­stalled in the CERN An­tipro­ton De­cel­er­a­tor (AD) and is op­er­ated there rou­tinely as the first stand-alone CCC sys­tem. For the Fa­cil­ity for An­tipro­ton and Ion Re­search (FAIR) a new ver­sion of the CCC with eX­tended Di­men­sions (CCC-XD) - es­pe­cially with a larger inner di­am­e­ter and adapted pa­ra­me­ters - was con­structed and first lab tests have al­ready been per­formed. In par­al­lel, a con­cept for a ded­i­cated UHV beam­line cryo­stat has been worked out. The CCC-XD sys­tem - to­gether with the new cryo­stat - will be ready for test­ing in the CRYRING at GSI be­fore the end of 2018. In this con­tri­bu­tion, ex­per­i­men­tal re­sults for the res­o­lu­tion, fre­quency range, slew rate and pulse-sig­nal ob­tained by elec­tri­cal lab­o­ra­tory mea­sure­ments with the CCC-XD are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK006 Bunch Shape Measurements at the GSI CW-Linac Prototype 2091
 
  • T. Sieber, W.A. Barth, P. Forck, V. Gettmann, M. Heilmann, H. Reeg, A. Reiter, S. Yaramyshev
    GSI, Darmstadt, Germany
  • F.D. Dziuba, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • A. Feschenko, S.A. Gavrilov
    RAS/INR, Moscow, Russia
 
  The ex­ist­ing GSI ac­cel­er­a­tor will be­come the in­jec­tor for FAIR. To pre­serve and en­hance the cur­rent ex­per­i­men­tal pro­gram at UNI­LAC, a new Linac is under de­vel­op­ment, which shall run in par­al­lel to the FAIR in­jec­tor, pro­vid­ing cw-beams of ions at en­er­gies from 3.5 - 7.3 MeV/u. For this cw-Linac a su­per­con­duct­ing pro­to­type cav­ity has been de­vel­oped and was first op­er­ated with beam in sum­mer 2017. The res­onator is a cross-bar H-struc­ture (CH) of 0.7 m length, with a res­o­nant fre­quency of 216.8 MHz. It has been in­stalled be­hind the GSI High Charge State In­jec­tor (HLI), which pro­vided 108 MHz bunches of 1.4 MeV/u Ar6+/9+/11+ ions at a duty cycle of 25 %. Due to the fre­quency jump and small lon­gi­tu­di­nal ac­cep­tance of the CH, proper match­ing of the HLI beam to the pro­to­type was re­quired. The bunch prop­er­ties of the in­jected beam as well as the ef­fect of dif­fer­ent phase- and am­pli­tude-set­tings of the cav­ity were mea­sured in de­tail with a bunch shape mon­i­tor (BSM) fab­ri­cated at INR, Moscow, while the mean en­ergy was an­a­lyzed by time of flight method. In this con­tri­bu­tion, the bunch shape mea­sure­ments are de­scribed and the ca­pa­bil­i­ties of the used BSM mea­sure­ment prin­ci­ple are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK007 Slow Extraction Spill Characterization From Micro to Milli-Second Scale 2095
 
  • R. Singh, P. Boutachkov, P. Forck, S. Sorge, H. Welker
    GSI, Darmstadt, Germany
 
  This con­tri­bu­tion deals with the topic of slow ex­trac­tion spill qual­ity char­ac­ter­i­za­tion based on the mea­sure­ments per­formed at GSI SIS-18. The sen­si­tiv­ity of the spill to power sup­ply rip­ples are stud­ied by in­tro­duc­ing ex­ter­nal rip­ples. An es­ti­mate of sources of in­her­ent power sup­ply rip­ples along with rip­ple mag­ni­tude are thus ob­tained. Spill char­ac­ter­i­za­tion in time and fre­quency do­main are dis­cussed and ex­em­pli­fied by a typ­i­cal spill and the dif­fer­ences from an ideal or Pois­son spill. An ap­pro­pri­ate spill char­ac­ter­i­za­tion aims to pro­vide a suit­able ab­strac­tion for com­mu­ni­ca­tion about the spill qual­ity re­quire­ments be­tween ac­cel­er­a­tor op­er­a­tions and users.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK008 Reconstructing Space-Charge Distorted IPM Profiles with Machine Learning Algorithms 2099
 
  • D.M. Vilsmeier, M. Sapinski, R. Singhpresenter
    GSI, Darmstadt, Germany
  • J.W. Storey
    CERN, Geneva, Switzerland
 
  Mea­sure­ments of undis­torted trans­verse pro­files via Ion­iza­tion Pro­file Mon­i­tors (IPMs) may pose a great chal­lenge for high bright­ness or high en­ergy beams due to in­ter­ac­tion of ion­ized elec­trons or ions with the elec­tro­mag­netic field of the beam. This con­tri­bu­tion pre­sents ap­pli­ca­tion of var­i­ous ma­chine learn­ing al­go­rithms to the prob­lem of re­con­struct­ing the ac­tual beam pro­file from mea­sured pro­files that are dis­torted by beam space-charge in­ter­ac­tion. (Gen­er­al­ized) lin­ear re­gres­sion, ar­ti­fi­cial neural net­work and sup­port vec­tor ma­chine al­go­rithms are trained with sim­u­la­tion data, ob­tained from the Vir­tual-IPM sim­u­la­tion tool, in order to learn the re­la­tion be­tween dis­torted pro­files and orig­i­nal beam di­men­sion. The per­for­mance of dif­fer­ent al­go­rithms is as­sessed and the ob­tained re­sults are very promis­ing for test­ing with sim­u­la­tion data.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK009 Applications of the Interferometric Beam Size Monitor at BESSY II 2103
 
  • M. Koopmans, P. Goslawski, J.G. Hwang, A. Jankowiak, M. Ries, A. Schälicke, G. Schiwietz
    HZB, Berlin, Germany
 
  For the up­grade pro­ject of the BESSY~II stor­age ring to BESSY~VSR * an in­ter­fer­o­met­ric beam size mon­i­tor was de­signed and set up. Since this sys­tem uses vis­i­ble light it can be up­graded ef­fi­ciently to pro­vide bunch re­solved mea­sure­ments. These are re­quired for ma­chine com­mis­sion­ing, de­vel­op­ment and to en­sure long term qual­ity and sta­bil­ity of user op­er­a­tion of BESSY~VSR. Var­i­ous ap­pli­ca­tions of the sys­tem are out­lined and mea­sure­ments are pre­sented.
* A. Jankowiak et al., eds., BESSY VSR Technical Design Study, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany, June 2015. DOI: 10.5442/R0001
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK010 Simulations and Measurements of the BPM Non Linearity and Kicker Timing Influence on the Tune Shift With Amplitude (TSWA) Measurement at BESSY II 2107
 
  • F. Kramer, P. Goslawski, J.G. Hwang, A. Jankowiak, P. Kuske, M. Ruprecht, A. Schälicke
    HZB, Berlin, Germany
 
  The Tune Shift With Am­pli­tude (TSWA) does not only de­ter­mine the po­si­tion of the sta­ble fix points for the Trans­verse Res­o­nant Is­land Buck­ets (TRIBs) but also rep­re­sents a global ob­serv­able for the non­lin­ear op­tics in gen­eral. For the­o­ret­i­cal in­ves­ti­ga­tions of the TRIBs a re­li­able non­lin­ear op­tics of the ma­chine is re­quired and thus all mea­sur­able global ob­serv­ables for the non­lin­ear op­tics are of great in­ter­est. The mea­sure­ment of the TSWA for the BESSY II stan­dard op­tics was per­formed using an in­jec­tion kicker to ex­cite high am­pli­tude be­ta­tron os­cil­la­tions and then ex­tract the am­pli­tude de­pen­dant fre­quency from the syn­chro­tron ra­di­a­tion damped os­cil­la­tion with a Hilbert trans­for­ma­tion. With TRIBs op­tics the in­jec­tion kicker was not able to suf­fi­cienty ex­cite the beam. The im­pact and cor­rectabil­ity of the BPM non­lin­ear­ity at the reached am­pli­tudes and the rea­son for the fail­ure of the ex­ci­ta­tion method for our TRIBs op­tics shall be looked onto in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK011 Development of the Electron-Beam Diagnostics for the Future BESSY-VSR Storage Ring 2110
 
  • G. Schiwietz, J.G. Hwang, M. Koopmans, M. Ries, A. Schälicke
    HZB, Berlin, Germany
 
  This con­tri­bu­tion fo­cusses on the dif­fer­ent types of new or im­proved elec­tron-beam mon­i­tors at BESSY II for bunch re­solved mea­sure­ments under fu­ture BESSY-VSR con­di­tions. A new di­ag­nos­tics plat­form, in­volv­ing three dif­fer­ent di­pole beam lines will be built for dif­fer­ent di-pole-re­lated op­ti­cal and THz meth­ods. Our main con­cepts for ro­bust fu­ture mon­i­tors for bunch length, beam size and po­si­tion are pre­sented in the fol­low­ing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK012 Developing Kalman Filter Based Detuning Control with a Digital SRF CW Cavity Simulator 2114
 
  • A. Ushakov, P. Echevarria, A. Neumann
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of the Helmholtz Association
Con­tin­u­ous wave op­er­ated su­per­con­duct­ing cav­i­ties ex­pe­ri­enc­ing small net beam load­ing and thus op­er­ate po­ten­tially at nar­row band­width re­quire pre­cise de­tun­ing con­trol to reach the high sta­bil­ity re­quire­ments for RF fields within fa­cil­i­ties as FEL or ERL based pho­ton sources. Es­pe­cially mi­cro­phon­ics com­pen­sa­tion down to sub-hertz de­tun­ing regime be­sides im­prov­ing sta­bil­ity re­duces the risk of rise of Lorentz force de­tun­ing dri­ven pon­dero­mo­tive in­sta­bil­i­ties. Usu­ally the com­plex and sec­ond order na­ture of the me­chan­i­cal to RF de­tun­ing trans­fer func­tions of cav­ity and cav­ity-tuner sys­tem re­quire for more ad­vanced con­trol schemes. In this paper we will show the ap­pli­ca­tion of a Kalman fil­ter based de­tun­ing es­ti­ma­tor al­go­rithm first in­tro­duced dur­ing IPAC2017 [1] to the SRF cav­ity sim­u­la­tor de­vel­oped at Helmholtz Zen­trum Berlin [2]. Re­sults using the al­go­rithm in ob­server mode to de­tun­ing com­pen­sa­tion at­tempts in closed loop mode are pre­sented.
* A. Ushakov, P. Echevarria, A. Neumann, Proc. of IPAC 2017, Copenhagen, Denmark
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK013 SRF Cavity Simulator for LLRF Algorithms Debugging 2118
 
  • P. Echevarria, J. Knobloch, A. Neumann, A. Ushakovpresenter
    HZB, Berlin, Germany
  • E. Aldekoa, J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association
The avail­abil­ity of nio­bium su­per­con­duct­ing cav­i­ties, ei-ther due to a lack of a real cav­ity or due to the time needed for the ex­per­i­ment set up (vac­uum, cryo­gen­ics, ca­bling, etc.), is lim­ited, and thus it can block or delay the de­velop-ment of new al­go­rithms such as low level RF con­trol. Hard­ware-in-the-loop sim­u­la­tions, where an ac­tual cav­ity is re­placed by an elec­tron­ics sys­tem, can help to solve this issue. In this paper we pre­sent a Cav­ity Sim­u­la­tor im­ple-mented in a Na­tional In­stru­ments PXI equipped with an FPGA mod­ule. This mod­ule op­er­ates with one in­ter­medi-ate fre­quency input which is IQ-de­mod­u­lated and fed to the elec­tri­cal cav­ity's model, where the trans­mit­ted and re-flected volt­ages are cal­cu­lated and IQ-mod­u­lated to gener-ate two in­ter­me­di­ate fre­quency out­puts. Some more ad-vanced fea­tures such as me­chan­i­cal vi­bra­tion modes dri­ven by Lorentz-force de­tun­ing or ex­ter­nal mi­cro­phon­ics have also been im­ple­mented. This Cav­ity Sim­u­la­tor is planned to be con­nected to an mTCA chas­sis to close the loop with a LLRF con­trol sys­tem.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK014 A New Pulse Magnet Control System in the KEK Electron Positron LINAC 2121
 
  • Y. Enomoto, K. Furukawa, T. Natsui, M. Satoh
    KEK, Ibaraki, Japan
  • H.S. Saotome
    Kanto Information Service (KIS), Accelerator Group, Ibaraki, Japan
 
  In 2017, sixty-four pules mag­nets were in­stalled in the KEK e+/e LINAC for si­mul­ta­ne­ous in­jec­tion to four dif­fer­ent rings. Since each ring re­quires dif­fer­ent in­jec­tion en­ergy, mag­netic field in the LINAC has to be changed shot by shot (every 20 ms) ac­cord­ing to the des­ti­na­tion of the beam. To re­al­ize such op­er­a­tion, a PXI ex­press based new con­trol sys­tem was in­stalled. Each unit, which con­sists of an event re­ceiver board, a DAC board, and a ADC board, can set and mon­i­tor out­put cur­rent up to 8 pulsed power sup­ply in 16 bit res­o­lu­tion. The tim­ing and con­trol sys­tem are in­te­grated in that of the LINAC by using Mi­cro-Re­search Fin­land's PXI event re­ceiver board. In terms of soft­ware, Win­dows 8.1 and Lab­VIEW 2016 were mainly adopted to con­trol the hard­ware. EPICS chan­nel ac­cess (CA) pro­to­col was used to com­mu­ni­cate with op­er­a­tor's in­ter­face pan­els. In ad­di­tion to real-time mon­i­tor­ing by EPICS CA and log­ging by CSS archiver every 10 s, data are logged every shot (every 20 ms) in the text file to­gether with time­stamp, shot ID and des­ti­na­tion. At pre­sent, thir­teen units are sta­bly in op­er­a­tion to con­trol 64 mag­nets. Fur­ther in­stal­la­tion of the sys­tem is planned in 2018.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK015 Beam Gate Control System for SuperKEKB 2124
 
  • H. Kaji, Y. Ohnishi, S. Sasaki, M. Satoh, H. Sugimura
    KEK, Ibaraki, Japan
  • Y. Iitsuka
    EJIT, Hitachi, Ibaraki, Japan
  • T. Kudou
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
 
  The elec­tron beam pulses of in­jec­tor linac for the Su­perKEKB col­lider are en­abled and dis­abled by Beam Gate con­trol sys­tem. This sys­tem con­trols the de­liv­ery of trig­gers to the elec­tron guns at the in­jec­tor. Also, the sep­tum and kicker mag­nets for in­jec­tion point of main ring are con­trolled with this Beam Gate to avoid un­nec­es­sary op­er­a­tion and to pro­long their life­time. The Beam Gate syn­chro­nizes the en­abling and dis­abling op­er­a­tions of these hard­ware even though they are about 1km dis­tant. Be­sides, from the phase-2 op­er­a­tion, the kicker and sep­tum mag­nets for newly con­structed damp­ing ring be­comes con­trolled ap­pa­ra­tus of this sys­tem. We de­velop the new Beam Gate con­trol sys­tem with the Event Tim­ing Sys­tem net­work*. The new sys­tem im­proves the un­sat­is­fied per­for­mance of Beam Gate in the phase-1 op­er­a­tion and re­al­izes the com­pli­cated con­trol for phase-2. The ad­van­tages of new sys­tem are: the con­trol sig­nal is de­liv­ered via Event net­tork, so that we do not need to cable new net­work. The en­abling and dis­abling op­er­a­tions for dis­tant hard­ware are surely syn­chro­nized by the Event Tim­ing Sys­tem.
* H. Kaji et al., "Construction and Commissioning Event Timing System at SuperKEKB", Proceedings of IPAC14, Dresden, Germany (2014).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK016 RF Monitor System for SuperKEKB Injector Linac 2128
 
  • H. Katagiri, M. Akemoto, D.A. Arakawa, T. Matsumotopresenter, T. Miura, F. Qiu, Y. Yano
    KEK, Ibaraki, Japan
 
  A new radio fre­quency (RF) mon­i­tor sys­tem for the Su­perKEKB pro­ject has been de­vel­oped at the KEK in-jec­tor linac. The RF mon­i­tor unit, which con­sists of an ana­log I/Q de­mod­u­la­tor, ADC/DAC board, and FPGA board achieved 50-Hz data ac­qui­si­tion and beam mode iden­ti­fi­ca­tion. On the RF mon­i­tor, the am­pli­tude and phase mea­sure­ment pre­ci­sion has achieved 0.1% rms and 0.1° rms, re­spec­tively. Sixty RF mon­i­tor units have been in­stalled in the linac. The pre­sent sta­tus of the RF mon­i­tor sys­tem will be re-ported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK017 Low-level RF System for the SuperKEKB Injector LINAC 2131
 
  • T. Matsumoto, M. Akemoto, D.A. Arakawa, H. Katagiri, T. Miura, F. Qiu, Y. Yano
    KEK, Ibaraki, Japan
  • M. Akemoto, T. Miura, F. Qiu
    Sokendai, Ibaraki, Japan
 
  The low-level RF (LLRF) sys­tem of the KEK in­jec­tor linac has been up­graded for the Su­perKEKB. As a major change, a low-emit­tance and high-cur­rent RF gun was in­stalled to sat­isfy 40-times higher lu­mi­nos­ity at the Su­perKEKB. In order to bal­ance the sta­ble RF gun op­er­a­tion and the elec­tron/positron beam ac­cel­er­a­tion, the phase shifter is de­vel­oped and the con­fig­u­ra­tion of main drive sys­tem in the LLRF sys­tem is mod­i­fied. The pre­sent sta­tus and fu­ture plan of the LLRF sys­tem up­graded for the Su­perKEKB will be re­ported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK018 LLRF Control Unit for SuperKEKB Injector Linac 2134
 
  • T. Miura, M. Akemoto, D.A. Arakawa, H. Katagiri, T. Matsumotopresenter, F. Qiu, Y. Yano
    KEK, Ibaraki, Japan
  • N. Liu
    Sokendai, Ibaraki, Japan
 
  The low-level RF (LLRF) con­trol unit based on the dig­i­tal sys­tem has been de­vel­oped for a sta­ble and high pre­ci­sion pulse mod­u­la­tion for the Su­perKEKB. The RF pulse is changed at a 50-Hz rep­e­ti­tion rate for the top-up in­jec­tion to four dif­fer­ent rings by the event sys­tem. The LLRF con­trol unit has not only the pulse mod­u­la­tor, but also other func­tions: VSWR meter, RF mon­i­tor, event re­ceiver (EVR), and pulse-short­en­ing de­tec­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)