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Abstract
Measurements of undistorted transverse profiles via Ion-

ization Profile Monitors (IPMs) may pose a great challenge
for high brightness or high energy beams due to interaction
of ionized electrons or ions with the electromagnetic field
of the beam. This contribution presents application of vari-
ous machine learning algorithms to the problem of inferring
the actual beam profile width from measured profiles that
are distorted by beam space-charge interaction. (General-
ized) linear regression, artificial neural network and support
vector machine algorithms are trained with simulation data,
obtained from the Virtual-IPM simulation tool, in order to
learn the relation between distorted profiles and original
beam dimension. The performance of different algorithms
is assessed and the obtained results are very promising with
simulation data.

INTRODUCTION
Ionization Profile Monitors (IPM) are used for non-

destructive measurements of the transverse beam profile.
They make use of residual gas ionization by the particle
beam and collect the ionization products via appropriate
guiding fields. The distribution of those ions and electrons
follows the charge distribution of the beam and the IPM
measures a corresponding one-dimensional projection. In
conditions when fast measurements are required, usually
electrons are measured due to their shorter time-of-flights.
An additional magnetic guiding field, collinear with the elec-
tric field, may be applied to confine the electron trajectories.
In cases where the magnetic field is not sufficient, electrons
might be registered at different locations than they were gen-
erated, leading to a deformation of the measured profiles
with respect to the beam profile. While several attempts
have been made to correct such effects for cases without
magnetic guiding field, only a few approaches exist for cases
with magnetic guiding field [1–4].

IPM PROFILE DISTORTION
In IPM, the deformation of measured beam profile oc-

curs as a result of effects related to ionization, transport of
electrons to the detector or detector-related effects such as
non-uniform response of Multi-Channel Plate (MCP). Here
we focus on correcting distortions which arise from ioniza-
tion and transport-related effects. These include mainly two
aspects; ionization momenta: the ionized electrons may have
a velocity component which points in the direction along
the measured profile. That means while electrons travel
towards the acquisition system, they will also experience
a displacement along the profile; space-charge interaction:

the interaction of electrons with the electric field of the par-
ticle beam may significantly alter their trajectories, resulting
in noticeable distortions.

The magnetic field, collinear with the electric field, typ-
ically has strength in range between 50 mT to 200 mT.
For 50 mT the gyro-frequency is 8.79 GHz and the result-
ing gyro-radii are around 100 µm while time-of-flights are
around 3 ns. Hence, electrons perform a few tens of gyra-
tions before reaching the detector. However the space-charge
interaction can become so strong, with fields of up to a few
MV m−1 [2] (typical extraction fields are around 50 kV m−1),
that electrons are (a) trapped in the space-charge region since
the beam electric field outweighs the electric guiding field,
and (b) forced on significantly different trajectories, result-
ing in a vast increase of gyro-radii and hence a distortion of
the measured profile.

USING MACHINE LEARNING
Domain knowledge describing IPM profile distortion un-

der these conditions is available [1–4], but the problem is
complex such that it is impractical to handcraft algorithms
that allow for the correction of distorted profiles. A princi-
pal characteristic of Machine Learning (ML) is to implicitly
deduce a set of rules from given data, mapping specific input
to output, relieving the user from this tedious task.

Relevant for the presented problem are machine learning
regression models which predict continuous variables (the
beam profile or its second moment) from the given data
(measured distorted profile, bunch length and intensity). In
general a ML model represents an algorithm f , a mapping
from input x to output yp called decision function, which is
specified by a set of parameters θi . While the structure of
such an algorithm is fixed (e.g. the number of parameters
|{θi}|), the goal is to tune θi so that the corresponding func-
tion f (x | {θi}) describes the output best. The quality of this
description is typically assessed by a so called loss function
L : (x, y, yp | {θi}) 7→ R+ where y is the expected output
for input x. Minimizing this loss function yields optimal
values for the predictor parameters θi .

The first application of machine learning to the presented
problem was limited to artificial neural networks [5] while
here we compare a whole range of algorithms with increasing
level of complexity as discussed in the next section.

Linear Regression and Ridge Regression
Linear Regression (LR) uses a linear approximation for

modelling the relationship between the scalar dependent
variable yp and one or more explanatory variables x. This
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corresponds to the following decision function:

yp = WT x + b (1)

where W is an array of coefficients ("weights") and b is a bias
term, both being adjusted during the fitting procedure. Mean
squared error (MSE) is typically used as the loss function
for linear regression:

L = arg min
W

∑
k

(
yk − yp,k

)2 (2)

where the sum is taken over the various training samples k
which are used to fit the model.

Ridge regression (RR) uses a similar decision function as
linear regression while the loss function contains a regular-
ization term for the magnitude of the weights:

L = arg min
W

∑
k

(
yk − yp,k

)2
+ λ‖W ‖2 (3)

where the regularization term λ‖W ‖2 represents the L2-
norm and λ is a scalar which defines the strength of regular-
ization. Hence the fitting procedure will try to improve the
quality of predictions while keeping the predictor weights as
small as possible, balancing these two factors. If a predictor
has small influence on improving the quality of predictions
its weight will be decreased in favor of other predictors. The
regularization term makes the ridge regression a more robust
model in comparison to the simple linear regression.

Kernel Ridge Regression
Kernel Ridge Regression (KRR) differs from the ridge

regression in the structure of the decision function. The
input features are (implicitly) transformed into a higher
dimensional feature space described by a kernel mapping
Φ : x 7→ x ′ which allows to describe non-linear relations
in the initial space. The weights are then optimized in that
higher dimensional feature space:

yp = WT
Φ(x) + b (4)

Explicitly computing such transformations may be compu-
tationally expensive. This issue is circumvented by apply-
ing the "kernel trick" which exploits the fact that fitting
and predicting only involves dot products between sam-
ples. The trick is to express feature space dot products,
K(x1, x2) = Φ(x1) ·Φ(x2) (the "kernel") in terms of the orig-
inal predictors x1, x2 such that it is not necessary to compute
the mapping Φ in the first place. Commonly used kernels
involve radial basis function kernel (RBF), polynomial ker-
nel (Poly) and linear kernel. Note that for the linear kernel
KRR is similar to RR if a similar loss function is employed.
The decision function is:

yp =
∑
k

αkK(xk, x) =
∑
k

αk Φ(xk) · Φ(x) (5)

where K is the considered kernel and αk are the Lagrange
multipliers used during the fitting step; they act as weights
for the training samples with index k.

Support Vector Machine Regression
In a nutshell, Support Vector Machine Regression (SVR)

differs from KRR in its loss function which causes a subset
of the training data to be selected (the support vectors) for
usage with the decision function. Only certain training sam-
ples for which |y − yp | > ε contribute to the loss function.
Once an optimal solution is found the corresponding sam-
ples constitute the support vectors. The decision function
is:

yp =
∑
k

(αk − α
∗
k)K(xk, x) + b (6)

where αk, α∗k are Lagrange multipliers corresponding to the
constraints of the optimization and xk are the selected sup-
port vectors. One has to note that both kernel based algo-
rithms allow choices for the kernel as well as for several
hyper-parameters which require either domain knowledge
or exhaustive search in hyper-parameter space.

Multi-Layer Perceptron
A fully-connected feed-forward Multi-Layer Perceptron

(MLP) is a specific architecture for artificial neural networks
(ANN) which is represented by consecutive layers of nodes
where all nodes of two consecutive layers are connected
to each other. Each node sums all its weighted inputs and
transforms the result using an activation function g. The
activation function should be non-linear in order to represent
non-linearities in the data and it must be differentiable in
order to comply with the fitting procedure. Typically used
activation functions are sigmoid or ReLU. An MLP with at
least one hidden layer is known to be a universal approxi-
mator [6] and can be shown to represent any function given
a sufficient number of nodes. The decision function for a
single hidden layer perceptron is described by

on = g

( M∑
m=1

Wnm · g

( N∑
l=1

Wml · xl + bhm

)
+ bon

)
(7)

For MLPs with multiple hidden layers the propagation of
inputs repeats in a similar fashion.

Weights are usually randomly initialized and then itera-
tively updated during the fitting procedure in order to min-
imize the selected loss function (e.g. MSE). In order to
do so, the gradient of the loss function with respect to the
MLP’s weights and biases is calculated using an appropri-
ate optimizer (e.g. gradient descent) at each iteration and
then applied with a previously chosen learning rate. This
gradient computation involves backpropagation of the error
to previous layers of the MLP. There are several variants for
calculating the gradients during backpropagation [7].

SIMULATIONS
The heuristics mentioned in the previous section rely on

the availability of reasonably accurate IPM simulation mod-
els [8] which provide the data for model fitting. The Virtual-
IPM simulation tool [9] has been used for simulating the
movement of electrons inside the IPM region. Table 1 shows
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the beam parameters, typical for LHC, used for the simu-
lations. Single bunches are modeled by three-dimensional
Gaussian charge distributions. The electric field of bunches
is computed via an analytic formula for a two-dimensional
Gaussian charge distribution [10] in the transverse plane
while the longitudinal dimension is taken into account by
rescaling the field with the particular line density. The longi-
tudinal field component is neglected. Both the electric and
the magnetic field of the beam are taken into account. The
external electric and magnetic guiding fields are modeled
to be uniform. The initial velocities of electrons are gener-
ated according to a double differential cross section for a
Hydrogen target [11]. The passage of only a single bunch
is simulated because the extraction times for electrons are
only a few nanoseconds while the bunch spacing is 25 ns.

Table 1: Simulation Parameters. The bunch population,
length, width and height are randomly varied within the
given ranges, resulting in a total of 21 021 data points.

Parameter Values
Beam particle type Protons
Energy 6.5 TeV
Bunch population 1.1 × 1011 to 2.1 × 1011

Bunch length (4σ) 0.9 ns to 1.2 ns
Bunch width (1σ) 270 µm to 370 µm
Bunch height (1σ) 360 µm to 600 µm
Electrode distance 85 mm
Applied voltage 4 kV
Magnetic field 0.2 T
Number of sim. particles 1 000 000
Time step size 0.3125 ps

Benchmarking of the simulation against LHC IPM data
was not possible, therefore measurements on SPS IPM were
performed. First, the IPM profile obtained with 200 mT
magnetic field, for which no distortion is expected, was com-
pared with wire scanner (WS) measurement. It was found
that the IPM profile suffers from a broadening which can
be described as a large, 520 µm point-spread function (PSF).
Applying this PSF to the simulated profiles shows good
agreement with the measurements for reduced magnetic
fields down to 16 mT as presented in Fig. 1.

Figure 1: Measurement with SPS IPM Horizontal at 16 mT
magnetic field strength, compared to simulation data.

RESULTS
The simulated profiles were binned with 100 µm, corre-

sponding to the resolution of the acquisition system. To-
gether with the bunch length σz and the bunch intensity
(number of protons per bunch) they were used as predictors
for the target output σx . Before fitting the ML models the
data was processed by dropping predictors that have zero
variance (profile points where no signal was recorded) and
scaling the remaining predictors to have zero mean and unit
variance x → (x − µ)/σ.

Results were obtained using the Python machine learning
package scikit-learn [12] as well as Tensorflow [13] with
Keras [14] interface. The following hyper-parameters were
used for the different models. KRR: degree = 2, α = 10−3;
SVR: γ = 10−4,C = 103, ε = 10−8; MLP: 4 hidden layers
(200, 170, 140, 110 nodes), ReLU activation function, Adam
optimizer (η = 0.001), MSE loss, 100 epochs with a batch
size of 8. Detailed description of these hyper-parameters
can be found in the respective software package.

In order to assess the quality of a particular model we
compared the mean and the standard deviation of the residu-
als y − yp as well as the R2-score, explained variance (EV)
and mean squared error (MSE) [12]. The results for the
different ML models are depicted in Table 2.

Table 2: Resulting Scores for the Different Models. Values
are given in units of 1 µm, 1 µm respectively.2

µ(res) σ(res) R2 EV MSE
LR 0.012 0.449 0.99976 0.99976 0.201
KRR 0.005 0.340 0.99986 0.99986 0.115
SVR 0.006 0.349 0.99985 0.99985 0.121
MLP 0.232 0.370 0.99977 0.99984 0.190

Linear regression already provides a very good estimate
of input beam profile width from the simulated output pro-
file. KRR, SVR and MLP show incremental improvement.
The performance of these algorithms has been tested in the
presence of additive Gaussian noise and the estimated pro-
file uncertainty increases linearly with noise [5]. For a full
profile reconstruction, ANNs might be advantageous over
other methods due to the possibility of a full mapping of
measured profile to the actual profile. The study will be
continued using the measured data.

SUMMARY
A novel method for resolving IPM profile distortion under

the influence of magnetic guiding fields based on machine
learning is presented. The first investigations, using sim-
ulated data, yield promising results. Next steps include
estimation of influence of error sources on predictions, opti-
mization of model selection and application of the method
to measured data. The method has a potential to extend
usability and reduce cost of IPMs for high brightness beams.
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