Multiple charge state ion beam acceleration with an RFQ LINAC

Jun Tamura^{1, 2, 3},

Toshiyuki Hattori¹, Noriyosu Hayashizaki¹, Takuya Ishibashi¹, Taku Ito¹, Takeshi Kanesue⁴, Hirotsugu Kashiwagi⁵, Masahiro Okamura³

> ¹Tokyo Institute of Technology ²RIKEN ³Brookhaven National Laboratory ⁴Kyushu University ⁵Japan Atomic Energy Agency

Outline

Space chare dominated beam dynamics in an RFQ linac

Contents

- 1. Introduction
- 2. Direct Plasma Injection Scheme
- 3. Single charge beam acceleration
- 4. Multi charge beam acceleration

1. Introduction

Desired ions with different charge state ions

Some accelerator systems

Multi charge beam injected simultaneously into RFQ linac

Example

1. Direct Plasma Injection Scheme (Laser Ion Source + RFQ

Linac)

2. EBIS based RHIC injector at BNL

Aim

Effects from these different charge state ions cannot be neglected

2. Direct Plasma Injection Scheme

Combination of laser ion source and RFQ linac No LEBT

High-intensity heavy ion beam acceleration with low cost

- 1. Pulsed laser is focused on the laser target.
- 2. Generated laser plasma expand with initial drift velocity.
- 3. Designed ions are extracted at the RFQ entrance with high voltage applied to the cage inside the ion source chamber

RFQ linac for laser ion source at Brookhaven

Nd:YAG Laser

Wavelength : 1064 nm Energy per pulse : 2300 mJ Pulse duration : 4-8 ns Beam diameter : 17 mm Divergence : 0.5 mrad

RFQ Linac

F Frequency : 100 MHz Energy in : 20 keV/u Energy out : 100 keV/u Charge-to-Mass : 1/3 Cell number : 118 Length : 2 m

Ion current from laser plasma and beam current after RFQ

Laser plasma current after 215cm drift Measured with Faraday cup Beam current after the RFQ Measured with current transformer

Transverse transmission

Charge distribution measured with electrostatic analyzer

This charge state distribution vs. time is used for the simulation of the output beam pulse.

Particle-Mesh method

Simulation at different times in the pulse

6.0keV (at 2.01us), 40mA

10.0keV (at 1.56us), 10mA

4.5keV (at 2.32us), 20mA

8.0keV (at 1.74us), 80mA

3.0keV (at 2.85us), 4mA

Simulation result

2. Single charge beam acceleration with an RFQ linac

3. Multi charge beam acceleration with an RFQ linac

Parameters for simulation

Frequency = 100.0 MHz Time step : dt = 0.625 ns (1 RF cycle divided by 16) 1 macro-particle represent about 1000 particles. Calculation box : 2cm * 2cm * beta*lambda (mesh : 80 * 80 * 160) Inter-vane voltage : 96kV (for C5+ acceleration) Elimit = 250.0 keV 944 time steps for 118 cells

Initial distribution on horizontal phase plane

Particle motions on longitudinal phase space

C4+, R-loss : 00.0 %, L-loss : 100 % C5+, R-loss : 00.0 %, L-loss : 4.04 % C6+, R-loss : 00.0 %, L-loss : 32.0%

Without space charge

C4+ : Blue
C5+ : Green
C6+ : Red

C4+, R-loss : 00.0 %, L-loss : 100 % C5+, R-loss : 00.0 %, L-loss : 7.95 % C6+, R-loss : 0.02 %, L-loss : 46.2 %

With space charge (total current of 12mA)

Particle motions in transverse phase plane

Au31+, Au32+, Au33+ Acceleration with new EBIS-

RFQ

These ions have close charge-to-mass ratio

Summary

- 1. Numerical simulation for multiple charge state ion beam acceleration in an RFQ linac
- 2. Transverse emittance growth with single charge beam and multi charge beam
- 3. Beam acceleration example for Direct Plasma Injection Scheme
- 4. Beam acceleration example for EBIS-RFQ for RHIC injector at BNL
- 5. Importance of multi charge effect to designed particle

Thanks for your attention

Electric field potential at RFQ entrance section

The most characteristic part of Direct Injection Scheme

External electric field from static and RF obtained separately by using KOBRA3-INP

STATIC

RF

C4+

Initial energy : 16.0 keV/u Alpha : 0.750 Beta : 0.0648 mm/mrad Emit: 85.310 pi mm mrad **C5+** Initial energy : 20.0 keV/u Alpha : 0.750 Beta : 0.0725 mm/mrad Emit : 76.301 pi mm mrad **C6+** Initial energy : 24.0 keV/u Alpha : 0.750 Beta : 0.0794 mm/mrad Emit : 69.658 pi mm mrad

RFQ output emittance with and without space charge

