A   B   C   D   E   F   G   H   I   K   L   O   P   Q   R   S   T   V  

cathode

Paper Title Other Keywords Page
TUPS06 Electron Gun with Variable Beam Profile for COSY Cooler electron, gun, simulation, controls 99
 
  • A. V. Bubley, M. I. Bryzgunov, A. V. Ivanov, A. M. Kruchkov, V. V. Parkhomchuk, V. B. Reva
    BINP SB RAS, Novosibirsk
  Electron gun with variable beam profile is used on COSY 2 MeV cooler to optimize the cooling process. Further development of the gun is achieved with the help of the four-sector control electrode that provides some new features. Combined with BPMs it gives the possibility of the electron beam shape estimation. Application of the gun for stochastic cooling is also discussed in the article.  
 
TUPS13 Electron Cooler for NICA Collider electron, acceleration, gun, feedback 125
 
  • S. Yakovenko, E. V. Ahmanova, A. G. Kobets, I. N. Meshkov, R. Pivin, A. Yu. Rudakov, A. V. Smirnov, N. D. Topilin, Yu. A. Tumanova
    JINR, Dubna, Moscow Region
  • A. A. Filippov
    Allrussian Electrotechnical Institute, Moskow
  • A. V. Shabunov
    JINR/VBLHEP, Moscow
  The electron cooling system at electron energy up to 2.5 MeV for the NICA collider is under design at JINR. The electron cooler is developed according to the available world practice of similar systems manufacturing. The main peculiarity of the electron cooler for the NICA collider is using of two cooling electron beams (one electron beam per each ring of the collider) that never has been done before. The acceleration and deceleration of the electron beams is produced by common high-voltage generator. The conceptual design of the electron cooling system has been developed. The cooler consist of three tanks. Two of them contain acceleration/deceleration tubes and are immersed in superconducting solenoids. The third one contains HV generator, which design is based on voltage multiplying scheme  
 
TUPS21 The Nonlinear Transformation of a Ions Beam in the Plasma Lens plasma, ion, focusing, target 144
 
  • A. A. Drozdovsky, N. N. Alexeev, S. A. Drozdovsky, A. Golubev, Yu. B. Novozhilov, P. V. Sasorov, S. M. Savin, V. V. Yanenko
    ITEP, Moscow
  The plasma lens can carry out not only sharp focusing of ions beam. At those stages at which the magnetic field is nonlinear, formation of other interesting configurations of beams is possible. Plasma lens provides formation of hollow beams of ions in a wide range of parameters*. Application of the several plasma lenses allow to create some nontrivial spatial configurations of ions beams**: to get a conic and a cylindrical beams. The plasma lens can be used for transformation of beams with Gaussian distribution of particles density in a beams with homogeneous spatial distribution. The calculations showed that it is possible for a case of equilibrium Bennett's distribution of a discharge current . This requires a long duration of a discharge current pulse of > 10 mks. The first beam tests have essentially confirmed expected result. Calculations and measurements were performed for a C+6 and Fe+26 beams of 200-300 MeV/a.u.m. energy. The obtained results and analysis are reported.

* A. Drozdovskiy et al., IPAC'10, Kioto, Japan, http://cern.ch/AccelConf/IPAC10 /MOPE040.
** A. Drozdovskiy et al., RUPAC’10, Protvino, Russia, http://cern.ch/AccelConf/RUPAC10 /THCHA01.