A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    

insertion

Paper Title Other Keywords Page
MOPKF031 SOLEIL Insertion Devices: The Progress Report wiggler, vacuum, radiation, damping 369
 
  • O.V. Chubar, C. Benabderrahmane, A. Dael, M.-P. Level, O. Marcouillé, M. Massal
    SOLEIL, Gif-sur-Yvette
  The French national synchrotron radiation source SOLEIL is planned to start operation in 2006 with several different insertion devices installed in the storage ring either from "day one" or within the first year. The list of high-priority insertion devices includes: 3 planar hybrid in-vacuum undulators with the period of 20 mm; 3 Apple-II type PPM undulators with the period of 80 mm; 3 electromagnet elliptical undulators with the period of 256 mm, and a 640 mm period elliptical electromagnet undulator offering advanced possibilities for fine-tuning of polarization states of the emitted radiation. The emission of all these undulators is covering wide spectral range extending from hard X-rays to UV. Pre-design of the IDs was done by SOLEIL. The construction will be done by industrial companies and institutions with production capabilities. Magnetic assembly of the Apple-II and in-vacuum undulators is planned to be done in collaboration with ELETTRA and ESRF. The final magnetic measurements of all the IDs will be made in the SOLEIL magnetic measurements laboratory. The paper will present peculiarities of the magnetic design, calculated maximum-flux spectra and associated heat load in various modes of operation.  
 
MOPKF049 Design Study for a 205 MeV Energy Recovery Linac Test Facility at the KEK injection, linac, booster, cathode 420
 
  • E.-S. Kim
    PAL, Pohang
  • K. Yokoya
    KEK, Ibaraki
  We present a lattice and beam dynmics analysis for a 200 MeV energy recovery linac test facility at the KEK. The test facility consists of a photocathode rf gun, a 5 MeV injector, a merger, 200 MeV superconducting linac, TBA sections and beam dump line. Beam parameters and optimal optics to relaize the energy recovery linac are described. Simulation results on emittance growth due to HOMs in the superconducting linac and coherent synchrotron radiation in the designed lattice are presented.  
 
MOPKF059 Magnet Specification for the Daresbury Laboratory Energy Recovery Linac Prototype wiggler, bunching, cathode, gun 443
 
  • N. Thompson, N. Marks
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Daresbury Laboratory has funding for the design and construction of an Energy Recovery Linac (ERL) prototype to facilitate the R&D necessary for the 4th Generation Light Source (4GLS). In the prototype a 35MeV electron beam will be used to drive an Infra-Red Oscillator Free-Electron Laser. The ring consists of two 180°; triple bend achromats, two straight sections, an injection chicane, an extraction chicane and two bunch compression/decompression chicanes. A number of pre-existing magnets will be used in the ring so the new magnets have been designed to ensure compatibility with the existing designs, enabling common power supply, vacuum and control system specifications. This paper gives an overview of the magnet requirements for the facility and details of the engineering realisation.  
 
MOPKF060 Space Charge Effects for the ERL Prototype at Daresbury Laboratory wiggler, bunching, cathode, gun 446
 
  • B.D. Muratori, C. Gerth
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Vinokurov
    BINP SB RAS, Novosibirsk
  Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will operate at a beam energy of 35 MeV. In this paper we examine the Space Charge effects on the beam dynamics in the ERLP injector line. This is done in two distinct ways. The first is based on an analytic formula derived by Vinokurov through the envelope equations and a Kapchinsky-Vladimirsky (KV) distribution. This formula gives a rough estimate of the space charge effects in the case that no quadrupoles or dipoles are present in the injector line. The second estimate is given by the multi-particle tracking code ASTRA for the whole injector line both with and without quadrupoles. Both methods are compared and are found to be in good agreement. Typical examples of injector lines are given together with specific calculations for the ERLP.  
 
MOPKF061 Optics Layout for the ERL Prototype at Daresbury Laboratory wiggler, bunching, cathode, gun 449
 
  • B.D. Muratori, H.L. Owen, J.A. Varley
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  The overall optics for the Energy Recovery Linac Prototype (ERLP) at Daresbury Laboratory is summarised. This includes the layout of the injector line, all chicanes used, as well as details of both the outward and return TBA arcs. The tunability in several sections of the machine is examined under different operational modes and starting parameters from the end of the booster to the dump.  
 
MOPKF062 Choice of Arc Design for the ERL Prototype at Daresbury Laboratory wiggler, bunching, cathode, gun 452
 
  • H.L. Owen, B.D. Muratori
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  The choice of arc design for the Energy Recovery Linac Prototype (ERLP) to be built at Daresbury Laboratory is investigated. Both the overall merits and disadvantages of a TBA arc and Bates bend are considered, and space restrictions particular to Daresbury Laboratory given. Some magnet parameters are given together with a summary of the layout of the ERLP.  
 
MOPKF063 4GLS and the Prototype Energy Recovery Linac Project at Daresbury wiggler, bunching, cathode, gun 455
 
  • M.W. Poole, E.A. Seddon
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  The 4GLS project is a novel next generation solution for a UK national light source proposed to be sited at Daresbury. It is based on an energy recovery linac (ERL) operating at high average beam currents up to 100mA and with compression schemes producing pulses in the 10-100 fs range. This would provide a unique spontaneous emission source with high average brightness output both from undulators and bending magnets. In addition to this operating regime a high peak current mode would also be possible at lower duty cycle, enabling a high gain FEL amplifier to generate XUV radiation. Longer wavelength FELs are also planned. This challenging accelerator technology, new to Europe, necessitates a significant R&D programme and as a major part of this a low energy prototype, the ERLP, is being constructed at Daresbury. The paper summarises the ERLP design specification, describes the component solutions adopted and explains the 4GLS project status and plans.  
 
MOPKF064 Design Considerations for a Helical Undulator for the Production of Polarised Positrons for TESLA wiggler, bunching, cathode, gun 458
 
  • D.J. Scott, S.C. Appleton, J.A. Clarke, B. Todd
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • E. Baynham, T.W. Bradshaw, S.C. Carr, Y. Ivanyushenkov, J. Rochford
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  An efficient and simple method for the production of positrons, in the necessary quantities, is one of the problems facing proposals for any future e+ e- Linear Collider project. The possibility of colliding polarised beams would also be an advantage. One method to produce a polarised positron beam uses circularly polarised radiation generated by the main electron beam passing through a helical undulator. Design considerations and calculations for two undulators, based on super-conducting and pure permanent magnet technologies, for the TESLA machine, are presented.  
 
MOPKF065 Magnet Block Sorting for Variably Polarising Undulators wiggler, bunching, cathode, gun 461
 
  • D.J. Scott
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Effective sorting of permanent magnet blocks for undulators can reduce the adverse effects of magnetic in-homogeneities and engineering tolerances on the electron beam. For variably polarising undulators the number of different modes of operation make defining the objective function of a particular permutation more difficult than for a planar device. Factors required in defining a good objective function for a new APPLE-II type helical undulator for the SRS are discussed. These factors include calculating the magnetic field integrals, the particle trajectory and rms optical phase error. The effects of different weighting of these functions in the objective function are also discussed. A comparison of different optimisation techniques, including simulated annealing and Monte Carlo methods is also made.  
 
MOPKF070 Design of Injector Systems for LUX undulator, wiggler, bunching, cathode 476
 
  • S.M. Lidia
    LBNL/AFR, Berkeley, California
  The LUX concept [1] for a superconducting recirculating linac based ultrafast x-ray facility features a unique high-brightness electron beam injector. The design of the injector complex that meets the baseline requirements for LUX are presented. A dual-rf gun injector provides both high-brightness electron beams to drive the cascaded, seeded harmonic generation VUV-soft x-ray FELs as well as the ultra- low-vertical emittance ('flat') beams that radiate in hard x-ray spontaneous emission synchrotron beamlines. Details of the injector complex design and performance characteristics are presented. Contributions by the thermal emittance and optical pulse shaping to the beam emission at the photocathode and to the beam dynamics throughout the injector are presented. Techniques that seek to optimize the injector performance, as well as constraints that prevent straightforward optimization, are discussed.  
 
MOPKF071 Study of Row Phase Dependent Skew Quadrupole Fields in Apple-II type EPUs at the ALS undulator, wiggler, bunching, cathode 479
 
  • C. Steier, S. Marks, S. Prestemon, D. Robin, R.D. Schlueter, A. Wolski
    LBNL, Berkeley, California
  Since about 5 years, Apple-II type Elliptically Polarizing Undulators (EPU) have been used very successfully at the ALS to generate high brightness photon beams with arbitrary polarization. However, both EPUs installed so far cause significant changes of the vertical beamsize, especially when the row phase is changed to change the polarization of the photons emitted. The effect has been measured in detail and turned out to be caused by a row phase dependent skew quadrupole term in the EPUs. Magnetic measurements revealed the same effect for the third EPU to be installed later this year. All measurements to identify and quantify the effect with beam will be presented, as well as results of magnetic bench measurements and numeric field simulations.  
 
MOPKF073 Design Study of the Bending Sections between Harmonic Cascade FEL Stages undulator, wiggler, cathode, laser 485
 
  • W. Wan, J.N. Corlett, W. Fawley, A. Zholents
    LBNL, Berkeley, California
  The present design of LUX (linac based ultra-fast X-ray facility) includes a harmonic cascade FEL chain to generate coherent EUV and soft X-ray radiation. Four cascade stages, each consisting of two undulators acting as a modulator and a radiator, respectively, are envisioned to produce photons of approximate wavelengths 48 nm, 12 nm, 4 nm and 1 nm. Bending sections may be placed between the modulator and the radiator of each stage to adjust and maintain bunching of the electrons, to separate, in space, photons of different wavelengths and to optimize the use of real estate. In this note, the conceptual design of such a bending section, which may be used at all four stages, is presented. Preliminary tracking results show that it is possible to maintain bunch structure of nm length scale in the presence of errors, provided that there is adequate orbit correction and there are 2 families of trim quads and trim skew quads, respectively, in each bending section.  
 
MOPKF074 Harmonic Cascade FEL Designs for LUX electron, wiggler, cathode, laser 488
 
  • G. Penn, J.N. Corlett, W. Fawley, M. Reinsch, W. Wan, J.S. Wurtele, A. Zholents
    LBNL, Berkeley, California
  LUX is a proposed facility for ultrafast X-ray science, based on an electron beam accelerated to GeV energies in a recirculating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 190–250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.  
 
MOPKF076 An Overview of the Cryomodule for the Cornell ERL Injector electron, wiggler, cathode, laser 491
 
  • H. Padamsee, B.M. Barstow, V. Medjidzade, V.D. Shemelin, K.W. Smolenski
    Cornell University, Ithaca, New York
  • I. Bazarov, C.K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
  • S.A. Belomestnykh, R. Geng, M. Liepe, M. Tigner, V. Veshcherevich
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  The first stage of the Cornell ERL project will be a 100 MeV, 100 mA (CW) prototype machine to study the energy recovery concept with high current, low emittance beams. In the injector, a bunched 100 mA, 500 keV beam of a DC gun will be compressed in a normal-conducting copper buncher and subsequently accelerated by five superconducting 2-cell cavities to an energy of 5.5 MeV. We will present an overview of the injector status to include the status of the cryomodule design along with the status of the 2-cell HOM-free cavity, the twin-input coupler and the ferrite HOM dampers in related papers.  
 
MOPKF079 The Linac Coherent Light Source Photo-Injector Overview and Some Design Details linac, wiggler, cathode, gun 500
 
  • D. Dowell, R. Akre, L.D. Bentson, P. Bolton, R.F. Boyce, R. Carr, J.E. Clendenin, S.M. Gierman, A. Gilevich, K. Kotturi, Z. Li, C. Limborg-Deprey, W. Linebarger, M. Ortega, J. Schmerge, P. Smith, L. Xiao
    SLAC, Menlo Park, California
  The Linac Coherent Light Source (LCLS)[*] is a SASE free electron laser using the last 1/3 of the SLAC two mile linac to produce 1.5 to 15 angstrom x-rays in a 100 meter long undulator. A new 135 MeV photo-injector will be built in an existing, off-axis vault at the 2/3 point of the main linac. The injector accelerator consists of a BNL/SLAC/UCLA s-band gun followed by two 3-meter long SLAC accelerator sections. The 5.6 MeV beam from the gun is matched into the first accelerator section and accelerated to 135 MeV before injection onto the main linac axis with a 35 degree bend [**]. Several modifications have been made to the rf gun, linac and beamline as well as the inclusion of several diagnostics have been incorporated into the injector design to achieve the required 1.2 micron projected emittance at a charge of 1 nC. In addition, a laser heater [***], will increase the uncorrelated energy spread to suppress coherent synchrotron radiation and longitudinal space charge instabilities in the main accelerator and bunch compressors [****]. The configuration and function of the major injector components will be described.

* Linac Coherent Light Source (LCLS) CDR No. SLAC-R-593 UC-414, 2002 ** C. Limborg et al., Proc. of the 2003 International FEL Conf *** R. Carr et al, Contrib. to these proceedings **** Z. Huang et al., Contrib. to these proceedings

 
 
WEPLT017 Numerical Studies of the Impact of the Separation Dipoles and Insertion Quadrupoles Field Quality on the Dynamic Aperture of the CERN LHC focusing, acceleration, bunching, beamloading 1855
 
  • M. Giovannozzi, O.S. Brüning, S.D. Fartoukh, T. Risselada, F. Schmidt
    CERN, Geneva
  A wide range of magnets, both warm and superconducting, will be used in the LHC. In addition to main dipoles, quadrupoles are used to focus the beam in regular arcs. Special dipoles separate or merge the two beams in insertion regions. A few very strong superconducting quadrupoles squeeze the beam to achieve the required luminosity, while warm quadrupoles are used in the collimation insertions. At injection the main dipoles largely dominate beam dynamics, but contributions from smaller classes of magnets should not be neglected. Peculiar optical configurations may dramatically enhance beam dynamics effects of few magnetic elements. This paper will focus on the effect of insertion quadrupoles, e.g. wide-aperture, and warm quadrupoles, as well as separation dipoles presenting on the dynamic aperture of the LHC machine.  
 
WEPLT018 Nonlinear Dynamics Studies at the CERN Proton Synchrotron: Precise Measurements of Islands Parameters for the Novel Multi-turn Extraction focusing, acceleration, bunching, beamloading 1858
 
  • M. Giovannozzi, P. Scaramuzzi
    CERN, Geneva
  Recently, a novel approach to perform multi-turn extraction from a circular accelerator was proposed. It is based on adiabatic capture of particles into islands of transverse phase space generated by nonlinear resonances. Sextupole and octupole magnets are used to generate these islands, while an appropriate slow variation of the linear tune allows particles to be trapped inside the islands. Intense experimental efforts showed that the approach is indeed performing rather well. However, good knowledge of the islands properties is a key ingredient for the success of this extraction type. In this paper, a series of measurements are presented dealing with the study of islands' parameters for the fourth-order resonance, such as detuning with amplitude, fixed points' position, betatron frequency, as well as detuning with amplitude inside the islands.  
 
WEPLT019 Towards a Unified General Purpose CAD System at CERN focusing, acceleration, bunching, beamloading 1861
 
  • T. Hakulinen, C. Andrews, B. Feral, P.-O. Friman, M. Mottier, T. Pettersson, C. Sorensen, E. Van Uytvinck
    CERN, Geneva
  Several different CAD systems are in use at CERN today. Most of the 3D design work for the LHC is being done using Euclid from MDTVision. For 2D design work AutoCAD is widely used. Also, various special design tools exist for tasks such as electrical design and schematics. Even though LHC design will be finished with Euclid, it has been clear since several years that a new 3D CAD system will be needed in the future. For this reason CERN carried out a comparison between the currently available 3D CAD software using a set of selection criteria important for CERN. The selected system was CATIA from Dassault together with local data base system SmarTeam. The aim is to use CATIA as a multi-disciplinary general purpose CAD tool which could eventually replace almost all of the other CAD systems at CERN. For this purpose, CATIA and SmarTeam are being integrated with the existing CAD utilities and data base systems developed in-house. Pilot users are using the system for real designs and the digital mock-up features of CATIA are used for integration studies of LHC experiments. The feature list of CATIA and SmarTeam is impressive and experience with the software has so far been almost exclusively positive. This is promising for software with which CERN will likely have to live for the next 20 years or more.  
 
WEPLT020 Installation of A Particle Accelerator: from Theory to Practice. The LHC Example focusing, acceleration, bunching, beamloading 1864
 
  • C. Hauviller, S. Weisz
    CERN, Geneva
  Installing and commissioning the thousands of equipments constituting a Particle Accelerator is a lengthy and complex process. A large number of multidisciplinary teams are involved over a long period lasting usually many years. Diverse boundary constrains must be taken into account: space, a long and narrow tunnel with few accesses, time, with milestones set many years in advance, and obviously budget. A strict organisation associated with the management tools and the right people is the only way to arrive to a success. The keywords are: Knowledge: A unique and up-to-date database of all the elements and their location, Integration: Study the physical position of the elements, suppress the interferences and define the installation methodology, Prevision: Schedule all the activities and update on-line, In-situ management and supervision: Teams dedicated to follow-up, corrective actions and orphan jobs, Safety. After presenting the planned overall organization, the paper will present practical achievements with the example of the LHC machine installation.  
 
WEPLT021 Towards an Ontology Based Search Mechanism for the EDMS at CERN focusing, acceleration, bunching, beamloading 1867
 
  • A. Jimeno Yepes, B. Rousseau
    CERN, Geneva
  CERN is building its new accelerator, the LHC. All the data flow generated during its lifecycle is stored in the EDMS (Engineering Data Management System) developed at CERN. For such a system it is compulsory to have a performant search mechanism to guarantee that the involved people gets the data at the required time. Due to the size of the collection and the diversity of people, organizations, divisions . To overcome this problem, an approach based on a hand-crafted domain specific ontology has been tested in order to improve the information retrieval task within the technical documentation for the LHC Equipment Catalog. The experiments have shown that using the ontology an improvement on the base line has been produced and encorages IE techniques to refine the base ontology.  
 
WEPLT022 Transport and Installation of Cryo-magnets in CERN's Large Hadron Collider Tunnel focusing, acceleration, bunching, beamloading 1870
 
  • K. Kershaw, K. Artoos, O. Capatina, A.Y. Coin, M. Gielen, C. Hauviller
    CERN, Geneva
  The arcs of the Large Hadron Collider (LHC) will contain around 1700 main superconducting dipoles and quadrupoles. The long and heavy magnets are supported on fragile composite support posts inside a cryostat to reduce the heat in-leak to the magnets' super fluid helium bath. The presence of fragile components and the need to avoid geometry changes make the cryo-magnets very difficult to handle and transport. The transport and installation of the LHC cryo-magnets in the LEP tunnels originally designed for smaller, lighter LEP magnets has required development of completely new handling solutions. The paper explains the constraints imposed by the cryo-magnet characteristics, the existing tunnel infrastructure and schedule considerations. The development and realisation of transport and handling solutions are described, starting from conceptual design, through manufacture and testing to the installation of the first cryo-magnet. Integration studies to verify and reserve space needed for manoeuvre and the preparation of the infrastructure for transport and installation operations are also presented. The paper includes conclusions and some of the lessons learned.  
 
WEPLT023 Transverse Resistive Wall Impedance and Wake Function with Inductive Bypass focusing, acceleration, bunching, beamloading 1873
 
  • A. Koschik, F. Caspers, E. Métral, L. Vos
    CERN, Geneva
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
  We analyze the resistive wall impedance with an "inductive bypass" due to alternate current paths in the outer vacuum chamber proper. Also the corresponding wake function has been obtained which is useful for the simulation of beam stability in the time domain. Results are presented for the LHC.  
 
WEPLT024 Scheduling the Installation of the LHC Injection Lines focusing, acceleration, bunching, beamloading 1876
 
  • L. Lari, H. Gaillard, V. Mertens
    CERN, Geneva
  The installation of the two LHC injection lines has to fit within tight milestones of the LHC project and of CERN?s accelerator activity in general. For instance, the transfer line from the SPS to LHC point 8 (to fill the anti-clockwise LHC ring) should be tested with beam before the end of 2004 since the SPS will not run in 2005. It will first serve during the LHC sector test in 2006. Time constraints are also very strong on the installation of the transfer line from the SPS to LHC point 2 (for the clockwise LHC ring): its tunnel is the sole access for the LHC cryo-magnets and a large part of the beam line can only be installed once practically all LHC cryo-magnets are in place. Of course, the line must be operational when the LHC starts. This paper presents the various constraints and how they are taken into account for the logistics and installation planning of the LHC injection lines.  
 
WEPLT025 LHC Reference Database : Towards a Mechanical, Optical and Electrical Layout Database focusing, acceleration, bunching, beamloading 1879
 
  • P. Le Roux, S. Chemli, A. Jimeno Yepes, B. Maire, H. Prin, A. Vergara-Fernández, M. Zerlauth
    CERN, Geneva
  The LHC project has entered a phase of integration and installation of thousands of diverse components. The Hardware Commissioning work has also started. Collecting and distributing reliable and coherent information on the equipments and their layout becomes a crucial requirement in the lifecycle of the project. Existing database tools had to evolve to a more generic model to cover not only optical layout, but also the mechanical and the electrical aspects. This paper explains the requirements, the implementation and the benefits of this new database model.  
 
WEPLT026 Dynamic Aperture Reduction from the Dodecapole Component in the LHC Main Quadrupoles and its Mechanism. focusing, acceleration, bunching, beamloading 1882
 
  • A.M. Lombardi, O.S. Brüning, S.D. Fartoukh, T. Risselada, F. Schmidt, A. Verdier
    CERN, Geneva
  The systematic dodecapole component in the Main Quadrupoles of the LHC lattice has a strong influence on the machine dynamic aperture at injection. In this paper we quantify this effect with the help of tracking studies, explain the mechanism for the loss in dynamic aperture and look into potential correction schemes. Finally, we provide an estimate for the maximum allowed systematic dodecapole component in the MQ.  
 
WEPLT027 Connection Cryostats for LHC Dispersion Suppressors focusing, acceleration, bunching, beamloading 1885
 
  • S. Marque, T. Colombet, M. Genet, B. Skoczen
    CERN, Geneva
  The lattice of the Large Hadron Collider (LHC) being built at CERN is based on 8 standard arcs of 2.8 km length. Each arc is bounded on either side by Dispersion Suppressors connected to the arc by connection cryostats providing 15m long drift spaces. As for a dipole magnet, the connection cryostat provides a continuity of beam and insulation vacuum, electrical powering, cryogenic circuits, thermal and radiation shielding. In total 16 modules will be constructed. The stringent functional specification has led to various analyses. Among them, a light mechanical structure has been developed to obtain a stiffness comparable to a dipole magnet, for alignment purpose. Thermal studies, included λ front propagation, have been performed to ensure a cooling time down to 1.9K within the time budget. A special cooling scheme around the beam tubes has been chosen to cope with heat loads produced during operation. We will report on the general design of the module and on the manufacturing process adopted to guarantee the tight alignment of the beam tubes once the module installed in the machine. Special emphasis will be given on thermo-mechanical analysis, λ front propagation and on beam-tubes cooling scheme.  
 
WEPLT120 Control Environment for the Superconducting Insertion Devices at NSRRC radiation, sextupole, antiproton, resonance 2131
 
  • J. Chen, C.-K. Chang, K.-T. Hsu, K.H. Hu, C.H. Kuo, C.-J. Wang
    NSRRC, Hsinchu
  To enhance hard X-ray capability in the 1.5 GeV storage ring of NSRRC to serve the rapidly growing X-ray user community in Taiwan, the storage ring was installed two superconducting insertion devices. Three more superconducting insertion devices are in planning. A 6 Tesla superconducting wavelength shifter was installed in mid-2002. A 3.2 Tesla superconducting multi-pole wiggler was installed in December of 2003. Control system and operation environment have been set up to support the operation of the superconducting insertion devices. The implementation and operation experiences will be summarized in this report.  
 
WEPLT121 Computer Simulation of Equilibrium Electron Beam Distribution in the Proximity of 4th Order Single Nonlinear Resonance radiation, sextupole, antiproton, resonance 2134
 
  • T.-S. Ueng, C.-C. Kuo, H.-J. Tsai
    NSRRC, Hsinchu
  • A. Chao
    SLAC, Menlo Park, California
  The beam distribution of particles in an electron storage ring is distorted in the presence of nonlinear resonances. A computer simulation is used to study the equilibrium distribution of an electron beam in the presence of 4th order single nonlinear resonance. The results are compared with that obtained using an analytical approach by solving the Fokker-Planck equation to first order in the resonance strength. The effect of resonance on the quantum lifetime of electron beam is also compared and investigated.  
 
THPKF072 Progress with the Diamond Light Source coupling, gun, simulation, target 2430
 
  • R.P. Walker
    Diamond, Oxfordshire
  Construction of Diamond, the UK?s new 3 GeV, 3rd generation synchrotron light source, is well underway and progressing in-line with the original target of starting storage ring commissioning in January 2006 and being operational for users in January 2007. Having completed the foundations, the main building works are now proceeding at their maximum rate. Most of the major machine components are also under construction, aiming towards the key target date of starting machine installation in September 2004. As well as reporting on the overall status, detailed design developments and component choices will be summarised. The results of tests of various prototype components, including magnets, vacuum vessels and girders, will also be presented.  
 
THPKF073 CIRCE, the Coherent InfraRed CEnter at the ALS coupling, gun, simulation, target 2433
 
  • J.M. Byrd, S. De Santis, J.-Y. Jung, M.C. Martin, W.R. McKinney, D.V. Munson, H. Nishimura, D. Robin, F. Sannibale, R.D. Schlueter, M. Venturini, W. Wan, M.S. Zolotorev
    LBNL, Berkeley, California
  CIRCE (Coherent InfraRed Center) is a new electron storage ring to be built at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL). The ring design is optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range. CIRCE operation includes three possible modes: ultra stable CSR, femtosecond laser slicing CSR and broadband SASE. CSR will allow CIRCE to produce an extremely high flux in the terahertz frequency region. The many orders of magnitude increase in the intensity is the basis of our project and enables new kinds of science. The characteristics of CIRCE and of the different modes of operation are described in this paper.  
 
THPKF076 Plan to Upgrade the Advanced Light Source to Top-off Injection Operation radiation, electron, linac, simulation 2439
 
  • D. Robin, B. J. Bailey, K.M. Baptiste, W. Barry, E. Byrne, J.-Y. Jung, S. Kwiatkowski, R.S. Mueller, H. Nishimura, S. Prestemon, S.L. Rossi, F. Sannibale, D. Schlueter, D. Shuman, C. Steier, G.D. Stover, T. Warwick
    LBNL, Berkeley, California
  • R.J. Donahue
    LBNL/ALS, Berkeley, California
  The brightness and thermal stability of the Advanced Light Source (ALS) is lifetime limited. Brightness improvements such as narrower gap insertion devices, smaller emittance coupling, and higher currents all result in short lifetimes. In addition current changes over a fill impact the thermal stability of both the storage ring and beamlines. In order to mitigate these limitations there is a plan to upgrade the injector of the ALS to full energy injection and to operate in a quasi-continuous filling (Top-Off) injection operation. With Top-Off, the ALS will increase its time-averaged current by two, reduce the vertical emmittance, and operate with smaller gap insertion devices. In this paper we describe our upgrade plan.  
 
THPKF077 A Fiber Optic Synchronization System for LUX radiation, linac, laser, simulation 2442
 
  • R.B. Wilcox, L.R. Doolittle, J.W.  Staples
    LBNL, Berkeley, California
  The proposed LUX femtotsecond light source will support pump-probe experiments that will need to synchronize laser light pulses with electron-beam-generated X-ray pulses to less than 50fs at the experimenter endstations. To synchronize multiple endstation lasers with the X-ray pulse, we are developing a fiber-distributed optical timing network. A high stability clock signal from a modelocked laser is distributed via fiber to RF cavities (controlling X-ray probe pulse timing) and modelocked lasers at endstations (controlling pump pulse timing). The superconducting cavities are actively locked to the optical clock phase. Most of the RF timing error is contained within a 10kHz bandwidth, so these errors and any others affecting X-ray pulse timing (such as RF gun phase) can be detected and transmitted digitally to correct laser timing at the endstations. The lasers? timing jitter is limited to low frequency, and thus they will follow the controls (clock plus error correction) without adding much wideband error. Time delay through the fibers will be stabilized by comparing a retroreflected pulse from the experimenter endstation end with a reference pulse from the sending end, and actively controlling the fiber length. Numerical simulations and initial synchronization experimental results will be presented.  
 
THPKF078 Coherent Infrared Radiation from the ALS Generated via Femtosecond Laser Modulation of the Electron Beam electron, linac, laser, simulation 2445
 
  • A. Zholents, J.M. Byrd, Z. Hao, M.C. Martin, D. Robin, F. Sannibale, R.W. Schoenlein, M. Venturini, M.S. Zolotorev
    LBNL, Berkeley, California
  Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces significant modulation of the electron energies within a short ~100 fs slice of the electron bunch. Subsequent propagation of the energy-modulated bunch around the storage ring results in an appearance of a local temporal modulation of the electron density (micro-bunching) due to the dispersion of electron trajectories. The temporal width of this perturbation evolves as the electron bunch propagates around the ring. The shortest modulation, ~50 microns, appears in the ALS sector immediately following the wiggler magnet, and stretches to ~ 500 microns following propagation over 2/3 of a storage ring orbit. The modulated electron bunch emits single-cycle pulses of temporally and spatially coherent infrared light which are automatically synchronized to the laser pulses. The intensity and spectra of the infrared light were measured in two locations in the ring indicated above and were found to be in good agreement with analytical calculations. Ultra-short pulses of coherent infrared radiation are presently used for a fine tuning the laser ? electron beam interaction for generating femtosecond x-ray pulses.  
 
THPKF082 The Completion of SPEAR 3 electron, linac, laser, simulation 2448
 
  • R.O. Hettel, R. Akre, S. Allison, P. Bellomo, R.F. Boyce, L. Cadapan, R. Cassel, B. Choi, W.J. Corbett, D. Dell'Orco, T. Elioff, I. Evans, R. Fuller, S. Hill, D. Keeley, N. Kurita, J. Langton, G. Leyh, C. Limborg-Deprey, D. Macnair, D.J. Martin, P.A. McIntosh, E. Medvedko, C.-K. Ng, I. Nzeadibe, J. Olsen, M. Ortega, G.C. Pappas, S. Park, T. Rabedeau, H. Rarback, A. Ringwall, P. Rodriguez, J.A. Safranek, H.D. Schwarz, B. Scott, J.J. Sebek, S. Smith, T. Straumann, J. Tanabe, A. Terebilo, T.A. Trautwein, C. Wermelskirchen, M. Widmeyer, R. Yotam, K. Zuo
    SLAC/SSRL, Menlo Park, California
  On December 15, 2003, 8 1/2 months after the last electrons circulated in the old SPEAR2 storage ring and 5 days after the beginning of commissioning, the first electrons were accumulated in the completely new SPEAR3 ring. The rapid installation and commissioning is a testimony to the SPEAR3 project staff and collaborators who have built an excellent machine and equipped it with powerful and accessible machine modeling and control programs. The final year of component fabrication, system implementation and testing, the 7-month installation period leading up to the beginning of commissioning, and lessons learned are described.  
 
THPKF088 NSLS II: A Future Source for the NSLS radiation, linac, laser, simulation 2454
 
  • J.B. Murphy, J. Bengtsson, L. Berman, R. Biscardi, A. Blednykh, G.L. Carr, W.R. Casey, S.B. Dierker, E. Haas, R. Heese, S. Hulbert, E. Johnson, C.C. Kao, S.L. Kramer, S. Krinsky, I.P. Pinayev, R. Pindak, S. Pjerov, B. Podobedov, G. Rakowsky, J. Rose, T.V. Shaftan, B. Sheehy, D.P. Siddons, J. Skaritka, N. Towne, J.-M. Wang, X.J. Wang, L.-H. Yu
    BNL/NSLS, Upton, Long Island, New York
  The National Synchrotron Light Source at BNL was the first dedicated light source facility and has now operated for more than 20 years. During this time, the user community has grown to more than 2400 users annually. To insure that this vibrant user community has access to the highest quality photon beams, the NSLS is pursuing the design of a new ultrahigh brightness (~ 1E21) electron storage ring, tailored to the 0.3-20 keV photon energy range. We present our preliminary design and review the critical accelerator physics design issues.  
 
THPLT003 Vibrating Wire Scanner Parameters Optimization radiation, linac, laser, simulation 2457
 
  • S.G. Arutunian, K.G. Bakshetyan, N.M. Dobrovolski, M.R. Mailian, V.A. Oganessian, H.E. Soghoyan, I.E. Vasiniuk
    YerPhI, Yerevan
  • K. Wittenburg
    DESY, Hamburg
  The idea to use the metallic vibrating wire as a scanner of particles beams was experimentally confirmed [1, 2] and showed unprecedented sensibility and a huge dynamic rage of the output signal. In this work the response time of the system is estimated on the base of the dynamic model of heat transfer through the wire. A comparison of different materials of the wire is presented and the most suitable materials for different tasks are suggested. The dielectric materials are considered as possible materials of the wire, use of which allows to eliminate the electromagnetic induction from high current beams during the scanning of beam halo. The results of scanning of the iron ion beam of the mass spectrometer are presented. 1. Arutunian S.G., Avetisyan A.E., Dobrovolski N.M., Mailian M.R., Vasiniuk I.E, Wittenburg K., Reetz R., Problems of Installation of Vibrating Wire Scanners into Accelerator Vacuum Chamber. - Proc. 8-th Europ. Part. Accel. Conf. (3-7 June 2002, Paris, France), pp. 1837-1839. 2. Arutunian S.G., Dobrovolski N.M., Mailian M.R., Vasiniuk I.E., Vibrating wire scanner: first experimental results on the injector beam of Yerevan synchrotron.- Phys. Rev. Special Topics. - Accelerators and Beams, 2003, v. 6, 042801.  
 
THPLT004 Toroidal Cavity Loaded with an Electron Beam linac, laser, simulation, target 2460
 
  • E.D. Gazazyan, T. Harutyunyan, D. Kalantaryan
    YSU, Yerevan
  • V. Kocharyan
    DESY, Hamburg
  Three problems have been considered in this paper: the development of Maxwell's equations strict solution method to define the electromagnetic own values and own functions of the toroidal cavity; the radiation of the charged bunch rotating along the average radius, and, at last, the consideration of the case of a toroid filled with dielectric medium. The peculiarities of this radiation have been investigated as well. We suppose to consider the case when toroid is filled with plasma like a disperse medium.  
 
THPLT005 Ultra-high Frequency Scanning Cavities for Non-relativistic Electron Beam linac, laser, simulation, target 2463
 
  • G.G. Oksuzyan, E.D. Gazazyan, A.T. Margaryan, A.D. Ter-Poghosyan
    YerPhI, Yerevan
  • M. Ivanyan
    CANDLE, Yerevan
  The different scanning schemes based on the RF cavities for non-relativistic electron beam are examined. Optimization criteria for various types of cavities were developed. A complete picture of the beamscanning at a given point of interest is obtained.  
 
THPLT006 A Comparison of COSY DA Maps with Analytic Formulae for Orbit Functions of a Non-scaling FFAG Accelerator linac, laser, simulation, target 2466
 
  • S.R. Koscielniak
    TRIUMF, Vancouver
  Fixed Field Alternating Gradient (FFAG) magnetic lattices with fixed, possibly high, radio-frequency proposed for muon acceleration have unusual requirements: relative momentum swing dp/p of ± 30% and relative spread of revolution frequencies < 10-3. It is not evident whether the existing accelerator optical design codes are sufficiently accurate for such a large momentum range. Analytic expressions for orbit displacements, tunes and path length have been derived for thick-element models of doublet, F0D0 and FDF triplet lattices; it is this paper's purpose to compare these with values computed by SYNCH and COSY, and truncated Taylor maps constructed by Lie algebra. The mutual agreement of results from independent sources will serve to validate them all. A mathematical necessity is that one at least of the magnets be of the combined-function type, and with entrance and exit faces disposed in a sector layout. It is sufficient to consider the triplet case because in the limit that the two F quadrupoles are combined, the cell reduces to the simpler F0D0. We use as our example a "nonscaling" FFAG ring proposed for accelerations of muons over the momentum range 10-20 GeV/c.  
 
THPLT007 New Beam Profile Monitor Based on GEM Detector for the AD Transfer and Experimental Lines antiproton, linac, laser, simulation 2469
 
  • J. Bosser, K. Gnanvo, J. Spanggaard, G. Tranquille
    CERN, Geneva
  Many multi-wire proportional chambers, (MWPC's), are installed on the CERN Antiproton Decelerator (AD) transfer and experimental lines. They are used for the steering and profile measurement of the low energy antiproton beam that is extracted at the energy of 5.3 MeV from the AD machine. At this very low energy, the standard MWPC's are not only destructive for the beam but also perturb strongly the 2D profile measurement. These chambers are also based on technology that is outdated and in recent years have shown to be fragile and expensive to repair. For these reasons a new, low cost profile monitor, based on a Gas Electron Multiplier (GEM) detector is under development as a possible replacement of the MWPC's. This new profile monitor will enable high precision, true 2D profile measurements of the low energy antiproton beam. In this paper, we present the modification of the standard GEM detector required by our specific application and the first results of the profile monitor with antiproton beams.  
 
THPLT008 A Beam Condition Monitor for the Experimental Areas of the LHC antiproton, linac, laser, simulation 2472
 
  • L. Fernandez-Hernando, L. Fernandez-Hernando, C. Ilgner, A. Oh, H. Pernegger
    CERN, Geneva
  • A. Macpherson
    PSI, Villigen
  • T. Pritchard
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • R. Stone
    Rutgers University, The State University of New Jersey, Piscataway, New Jersey
  The CERN Large Hadron Collider (LHC) will store 2808 bunches per colliding beam, with each bunch consisting of 1·1011 protons at an energy of 7 TeV. If there is a failure in an element of the accelerator, the resulting beam losses could cause damage not only to the machine but also to the experiments. A Beam Condition Monitor (BCM) is foreseen to monitor fast increments of fluence rate near the interaction point and, if necessary, to generate an abort signal to the LHC accelerator control to dump the beams. The system is being developed initially for the CMS experiment, but is sufficiently general to find potential applications elsewhere. Due to its high radiation hardness, CVD diamond was chosen for investigation as the BCM sensor. Various samples of CVD diamond have been characterised extensively with both a Sr-90 source and in a high intensity testbeam in order to assess the capabilities of such sensors and to study whether this detector technology is suitable for a BCM system. A selection of results from these investigations is presented.  
 
THPLT009 Comparative Transverse Distribution Measurements between the New SPS Rest Gas Ionisation Monitor and the Wire Scanner Monitors. antiproton, linac, laser, simulation 2475
 
  • C. Fischer, B. Dehning, J. Koopman, D. Kramer, F. Roncarolo
    CERN, Geneva
  During the past two years, a new Ionization Profile Monitor was installed and tested in the CERN SPS. In parallel modifications were made on various wire scanner monitors. The aim is to develop instruments performing reliable measurements of transverse beam distributions in the SPS and in the LHC, in order to control the stringent emittance preservation requirements. Measurements made with the two types of monitors were performed under various conditions of LHC type beams, ranging from a pilot bunch up to beams having in the SPS nominal distributions in bunch number, intensity and energy for injection into the LHC. The data provided by the two types of instruments are compared. In the case of discrepancies, an analysis of the possible reasons is made. The cures implemented and the improvements foreseen are discussed.  
 
THPLT010 Limiting High Frequency Longitudinal Impedance of an Inductive Pick-up by a Thin Metallic Layer antiproton, laser, simulation, target 2478
 
  • M. Gasior
    CERN, Geneva
  An Inductive Pick-Up (IPU) was developed to measure the position and current of an electron beam of the CTF3 Drive Beam Linac. The pick-up construction is similar to a wall current monitor, but the pick-up inner wall is divided into 8 electrodes, each of which forms the primary winding of a toroidal transformer. The beam image current component flowing along each electrode is transformed to a secondary winding, connected to an output. The continuity of the vacuum chamber is taken care of by a ceramic insertion surrounded by the electrodes. The insertion is titanium coated on the inside and the end-to-end resistance of the layer is chosen in such a way that within the IPU bandwidth the image current flows over the electrodes. For higher frequencies the current is conducted by the coating to limit the longitudinal impedance of the device in the GHz range. This paper describes a simple electric network model, which was used to simulate the influence of the coating and to optimize its resistance. The model is built from sections of ideal transmission lines and resistors and is suitable for SPICE simulations. Results of measurements and simulations are compared.