A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V    

factory

  
Paper Title Other Keywords Page
TU204 Effect of High Solenoidal Magnetic Fields on Breakdown Voltages of High Vacuum 805 MHz Cavities vacuum, collider, linac, background 271
 
  • A. Moretti, A.D. Bross, S. Geer, Z. Qian
    Fermilab, Batavia, Illinois
  • D.M. Errede
    University of Illinois at Urbana-Champaign, Urbana, Illinois
  • D. Li
    LBNL/AFR, Berkeley, California
  • J. Norem
    ANL, Argonne, Illinois
  • R.A. Rimmer
    Jefferson Lab, Newport News, Virginia
  • Y. Torun
    IIT, Chicago, Illinois
  • M.S. Zisman
    LBNL, Berkeley, California
  The demonstration of muon ionization cooling by a large factor is necessary to demonstrate the feasilibility of a collider or neutrino factory. An important cooling experiment, MICE [1], has been proposed to demonstrate 10 % cooling which will validate the technology. Ionization cooling is accomplished by passing a high-emittance beam in a multi-Tesla solenoidal channel alternately through regions of low Z material and very high accelerating RF Cavities. To determine the effect of very large solenoidal magnetic fields on the generations of Dark current, X-Rays and breakdown Voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station, and a large bore 5 T solenoidal superconducting magnet containing a pill box type Cavity with thin removable window apertures allowing dark current studies and breakdown studies of different materials. The results of this study will be presented. The study has shown that the peak achievable accelerating gradient is reduced by almost a factor two in a 4 T field.

[1] http://mice.iit.edu/.

 
Transparencies
 
FR102 Muon Ionization Cooling Experiment (MICE) emittance, simulation, collider, focusing 832
 
  • M.S. Zisman
    LBNL, Berkeley, California
  There is presently considerable activity worldwide on developing the technical capability for a “neutrino factory” based on a muon storage ring and, a muon collider. Muons are obtained from the decay of pions produced when an intense proton beam hits a high-Z target, so the initial muon beam has a large 6-dimensional phase space. To increase the muons’ phase-space density, we use ionization cooling, which is based on energy loss in an absorber, followed by re-acceleration with high-gradient, normal-conducting RF cavities. The absorber of choice is liquid hydrogen to minimize multiple scattering. A superimposed solenoidal focusing channel contains the muons. Although the physics is straightforward, the technology and its implementation are not. The international MICE collaboration will demonstrate ionization cooling of a muon beam in a short section of a typical cooling channel. The experiment is approved for operation at Rutherford Appleton Lab. We will measure the cooling effects of various absorber materials at various initial emittance values using single-particle counting techniques. The experiment layout and goals will be discussed, along with the status of component R&D.  
Transparencies