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   Introduction  
• Motivation for MICE 
 

— muon-based Neutrino Factory is most effective tool to probe 
neutrino sector and hopefully observe CP violation in lepton sector 

 
o results will test theories of neutrino masses and oscillation 

parameters, of importance for particle physics and cosmology 
 

— a high-performance Neutrino Factory (≈4 x 1020 νe aimed at far 
detector per 107 s year) depends on ionization cooling 
 
o straightforward physics, but not experimentally demonstrated 
 

— facility will be expensive (O(€1B)), so prudence dictates a 
demonstration of the key principle 

 
• Cooling demonstration aims: 
 

— to design, engineer, and build a section of cooling channel capable 
of giving the desired performance for a Neutrino Factory 

 
— to place this apparatus in a muon beam and measure its 

performance in a variety of modes of operation and beam conditions 
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   Introduction  
• Another aim 
 

— show that design tools (simulation codes) agree with experiment 
 

o gives confidence that we can optimize design of an actual facility 
 

– we test section of “a” cooling channel, not “the” cooling channel 
 

♦ simulations are the means to connect the two 
 

• Both simulations and apparatus tested must be as realistic as possible 
 
— incorporate full engineering details of all components into simulation 
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   Neutrino Factory Ingredients  
• Neutrino Factory comprises these sections 
 

— Proton Driver 
 (primary beam on production target) 
 
— Target and Capture 
 (create π’s; capture into  
 decay channel) 
 
— Bunching and Phase Rotation 
 (create bunches and reduce ∆E) 
 
— Cooling 
 (reduce transverse emittance of beam) 
 ⇒Muon Ionization Cooling Experiment 
 
— Acceleration 
 (130 MeV → 20–50 GeV with RLAs/FFAGs) 
 
— Storage Ring 
 (store muon beam for ≈500 turns;  
 optimize yield with long straight  

Study-IIa Neutrino Factory Layout  section aimed in desired direction) 
 

• Not an easy project, but no fundamental problems found to date 
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   Cooling Description  
• The need to cool the muons quickly dictates the approach to be used 
 

— muon lifetime in rest frame is 2.2 µs 
 

o “standard” stochastic cooling approach is much too slow 
 
o use novel technique of ionization cooling (tailor-made for muons) 
 

• Analogous to familiar SR damping process in electron storage rings 
 

— energy loss (SR or dE/dx) reduces px, py, pz 
 
— energy gain (RF cavities) restores only pz 
 
— repeating this reduces px,y/pz and thus transverse emittance 
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   Cooling Description  
• There is also a heating term 

 
— with SR it is quantum excitation 
 
— with ionization cooling it is multiple scattering 
 

• Balance between heating and cooling gives equilibrium emittance 
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— prefer low β⊥ (⇒ strong focusing), large X0 and dE/ds (⇒ H2 is 

best) 
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   Cooling Description  
• Merit factors for candidate MICE absorbers (scaled as equilibrium 

emittance) 
 

Material   (dE/ds)min. X0 Relative merit
 (MeV g–1 cm2)

 
  

   
(g cm–2)  

Gaseous H2 4.103 61.28 1.03
Liquid H2 4.034 61.28 1 
He    

    
    

    
    

1.937 94.32 0.55
LiH 1.94 86.9 0.47
Li 1.639 82.76 0.30
CH4 2.417 46.22 0.20
Be 1.594 65.19 0.18

 
— requirements for Al windows and extended absorber with H2 and He 

degrade these merit factors by roughly 30% 
 

o H2 is best, even with windows included 
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   Cooling Description  
• Typical momentum chosen for transverse cooling is p ≈ 200 MeV/c 
 

— this is optimal in terms of muon production from thick target 
 

 

Note benefits of LH2 
compared with other 
materials 

 

• Running below min. ionization energy increases longitudinal emittance 
 
— lower E particles have higher dE/dx than do higher E particles 

 
• Running above min. ionization point disadvantageous for several reasons 
 

— more demanding RF and magnet requirements; more E straggling 
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   Benefits of Cooling  
• Why does a Neutrino Factory need cooling? 
 

— large phase space volume (“emittance”) of initial muon beam is 
difficult to transport and accelerate efficiently 

 
o would require very large magnets and RF cavity apertures 

(possible in principle, but costly) 
 

— cooling increases muon density in a given acceptance by 4–10 
 

o the smaller the downstream acceptance, the larger the gain from 
cooling...and vice versa 

 
• For many particle physicists, the Holy Grail of muon beam R&D is to 

build a Muon Collider 
 

— collider gives energy-frontier facility in small footprint 
 
— for this application, cooling is mandatory! 
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   MICE Implementation  
• Layout of MICE components 
 

— one lattice cell of cooling channel components (based on U.S. 
Study-II configuration) is indicated 

 
— note that cooling channel is simply a linac with absorber material 

added 
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   MICE Implementation  
• Basic ingredients of a cooling channel are: 
 

— solenoid magnets to contain muons as they traverse the channel (B 
≈ 3 T) 

 
— absorbers to give energy loss (LH2, capable of handling ~100 W) 
 
— RF cavities to restore energy (16 MV/m gradient at 201 MHz) 
 

o power limitations (and probably background rates) preclude this 
gradient for MICE, which will typically operate at 8 MV/m 

 
• For MICE, we add 
 

— diffuser to create large emittance sample 
 
— upstream diagnostics section to define initial emittance 
 
— downstream diagnostics section to determine final emittance and 

particle ID 
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   MICE Implementation  
• Simulations of MICE performance have been done 
 

— several tools developed/adapted for cooling simulations (ICOOL, 
Geant4) 

 
— simulations of nominal cooling channel performance done with ICOOL 
 
— full MICE simulations with all details are done with Geant (G4MICE) 
 

• Typical parameters 
 

— beam 
 

momentum: 200 MeV/c (variable) 
momentum spread: ±20 MeV/c 
σx,y ≈ 5 cm; σx’,y’ ≈ 150 mrad 
 

— channel 
 

solenoid field: ≈3 T 
β⊥:      0.42 m 
cavity phase: 90° (on crest) 
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   MICE Implementation  
• ICOOL simulation of the MICE experiment shows transverse emittance 

reduction of ≈10% 
 

 

Energy variation 

Particle loss 

2D ε reduction 
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   MICE Implementation  
— virtual “scan” over input emittance locates the equilibrium emittance 

Equil. emittance
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— transmission is 100% for input emittance below 6 mm-rad 
 

o high-emittance behavior reflects “scraping” as well as cooling 
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   MICE Implementation  
— important to test alternatives from baseline case to verify scaling 
 

o different absorber materials (LHe, Li, Be,...); different beta 
functions 

 
— these permit variation of heating and cooling terms, hence εequil. 

 
o practical limit on reducing β⊥ is current density in focusing coils 
 
o doing low-beta tests at lower momentum avoids this limitation 
 

Case p 
(MeV/c) 

β⊥ 

(cm) 
1a   200 42
1b   

   
   
   
   

240 42
2 200 25.4
3 175 16.7
4 150 10.5
5 140 5.7

 

— operating with higher RF gradients (fewer cavities) or LN-
temperature cavities is also possible 
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   MICE Implementation  
• Main challenge of MICE 
 

— for cost reasons, we use only a single cell of a cooling channel 
 

⇒ emittance reduction will be small in absolute terms (O(10%)) 
 

– wish to measure emittance reduction at level of 10–3 
 

• Other challenges 
 

— operating high-gradient RF cavities in solenoidal field and with field 
terminations (windows or grids) 

 
— operating LH2 absorbers with very thin windows and consistent with 

safety regulations 
 
— integration of cooling channel components while maintaining 

operational functionality 
 
— these build upon R&D activities already under way outside of MICE 
 

o mainly under auspices of U.S. Neutrino Factory and Muon Collider 
Collaboration (“MC”) 
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   Cooling Hardware  
• Solenoid magnets 
 

— two types of coil required 
 

o focusing coils (integrated with absorber; cooled with cryocoolers) 
 
o coupling coils (outside of RF cavity module; also uses cryocoolers) 
 

 
 

Note “complications” of actual implementation 
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   Cooling Hardware  
• Field profile used in the design simulations is based on the indicated 

coil configuration  
 

— z = 0 is centerline of experiment (middle of central absorber) 
 
 

 
 
• An alternative magnetic configuration with no field flip can also be 

tested 
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   Cooling Hardware  
• Absorbers 
 

— design based on LH2 system with internal convection cooling 
 
— requires large diameter (300 mm), very thin (but strong!) Al 

windows 
 

o plus a second set of safety windows to form vacuum barrier 
 
— design tightly integrated with focusing coil package 
 

LH2

 

Vacuum window 

Focus coil Focus coil

Absorber window 
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   Cooling Hardware  
• 201 MHz RF cavity 
 

— RF module comprises 4 cavities with individual tuner mechanisms 
 
— cavities use precurved Be foils to increase shunt impedance 
 
 

      
 Exploded view of 201 MHz cavity 805 MHz version of precurved Be window 
           (1.2 m diameter) 
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   MUCOOL R&D Program  
• Ability of MICE collaboration to achieve its goals greatly enhanced by 

hardware R&D programs under way worldwide 
 
• U.S. MUCOOL R&D program has substantial effort in place to develop 

required hardware components for MICE 
 

— RF cavities, absorbers 
 
• MUCOOL is building and testing prototypes of the absorber and 201-

MHz RF cavity needed for MICE 
 

— a new area dedicated for component testing, the MUCOOL Test 
Area (MTA) is now in use at Fermilab 
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   MUCOOL R&D Program  
• Main RF challenge is to attain high gradient in the presence of a high 

magnetic field 
 

— increased breakdown and dark currents observed at 805 MHz 
 
— tests of different materials and coatings to mitigate effect will 

begin shortly 
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   MUCOOL R&D Program  
• Construction of 201 MHz RF cavity (LBNL, U-Miss., Jlab) is well along 
 

 

Pilot hole for port extrusion 

      Beam iris 
(42 cm diameter) 

 
— fabrication of prototype will be completed this year 
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   MUCOOL R&D Program  
• Absorber work focusing mainly on developing strong, thin windows 

(IIT, NIU, Oxford, U-Miss.) 
 

— destruction tested windows at NIU (with satisfactory results) 
 

o 340 µm windows break at 120 psi (8 atm) 
 
o new inflected window shape is  
 stronger and can be even thinner 

 
 

— use photogrammetry to characterize window behavior and verify 
FEA calculations (LH2 safety requirement) 

 

 

FE A, non-ela s tic  
region inc luded
FE A, non-ela s tic  
region inc luded
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   MUCOOL R&D Program  
• Convection-cooled absorber prototype fabricated at KEK 
 

— recently tested at Fermilab with LH2 (with no leaks!) 
 

   
          Prototype LH2 absorber   Test cryostat at MTA 

 
 

 
Accelerator and Fusion Research Division



   MICE Instrumentation  
• Parallel R&D effort on MICE instrumentation is under way 
 
• Upstream PID 
 

— TOF (70 ps resolution) used for PID, trigger, timing with respect 
to RF phase; Milan 

 
— Cerenkov used for π/µ separation; U.-Mississippi 

 
• Downstream PID 
 

— Electromagnetic calorimeter used for µ/e separation; Rome III 
 
— Cerenkov used for µ/e separation; Louvain 

 
• Tracker (baseline option) 
 

— scintillating fiber tracker (5 stations,  
 planar) used for 6D emittance 

measurement; Bari, Brunel, CERN,  
 Edinburgh, FNAL, Geneva, IIT,  
 Imperial College, KEK, Legnaro,  
 Liverpool, Napoli, Osaka, UCLA,  
 UC-Riverside 
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   MICE Status  
• MICE status 

 
— proposal submitted in January, 2003 
 

o international review held February, 2003 (recommended approval) 
 

o scientific approval from RAL in October, 2003 
 
— absorber system concept passed preliminary safety review by 

international review panel in December, 2003 
 
— estimated hardware cost is £11M (total cost £25M) 
 

o more than half of this is now in hand (mainly UK) 
 

• In U.S., MUTAC + MCOG have strongly recommended MICE the past 
two years 

 
— experiment considered “crucially important demonstration” 
 

• U.S. funding request submitted to NSF (under review) 
 

— stagnant funding makes it hard to launch new initiatives 
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   MICE Status  
• Collaborating institutions 

 
Europe  

  
  

   
  

  
   

   
  

  
   

   
   

   
   

   
   

   
   

   

Japan U.S.
 Bari KEK ANL

Brunel Osaka BNL
CERN Chicago-Enrico Fermi Institute

 Edinburgh FNAL
Genėve  Illinois Institute of Technology 

 Genova TJNAF
Glasgow LBNL
Imperial College 

 
 Mississippi 

Legnaro Northern Illinois
 Liverpool UCLA

LNF Frascati  UC-Riverside 
Louvain la Neuve 

 
  

Milano
Napoli
NIKHEF
Novosibirsk
Oxford
Padova
PSI
RAL
Roma III   
Sheffield
Trieste
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   Summary  
• R&D on required MICE components is already at an advanced stage 
 
• MICE will assemble and test these components in a realistic beam 

environment 
 

— as new ideas mature, MICE will likely serve as a test-bed for 
other components 

 
• MICE is a very challenging “linac R&D” program 
 

— additional collaborators are still very much welcome! 
 

• Resultant demonstration of muon cooling will validate key concept of 
Neutrino Factory design 

 
— and put Muon Collider concept closer to realization 

 
• Measured cooling performance will “calibrate” our design tools 
 

— permitting cost and performance optimization of future Neutrino 
Factory 

 
 ...the beam never lies! 
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