Author: Mueller, A.-S.    [Müller, A.-S.]
Paper Title Page
MOPAB035 Modified Lattice of the Compact Storage Ring in the cSTART Project at Karlsruhe Institute of Technology 159
 
  • A.I. Papash, E. Bründermann, B. Härer, A.-S. Müller, R. Ruprecht, J. Schäfer, M. Schuh
    KIT, Karlsruhe, Germany
 
  A very large ac­cep­tance com­pact stor­age ring (VLA-cSR) is under de­sign at the In­sti­tute for Beam Physics and Tech­nol­ogy (IBPT) of the Karl­sruhe In­sti­tute of Tech­nol­ogy (KIT, Ger­many). The com­bi­na­tion of a com­pact stor­age ring and a laser wake­field ac­cel­er­a­tor (LWFA) might be the basis for fu­ture com­pact light sources and ad­vanc­ing user fa­cil­i­ties. Mean­while, the post-LWFA beam should be adapted for stor­age and ac­cu­mu­la­tion in a ded­i­cated stor­age ring. Mod­i­fied geom­e­try and lat­tice of a VLA-cSR op­er­at­ing at 50 MeV en­ergy range have been stud­ied in de­tailed sim­u­la­tions. The main fea­tures of a new model are de­scribed here. The new de­sign, based on 45° bend­ing mag­nets, is suit­able to store the post-LWFA beam with a wide mo­men­tum spread (1% to 2%) as well as ul­tra-short elec­tron bunches in the fs range from the Fer­n­in­frarot Linac- Und Test- Ex­per­i­ment (FLUTE). The DBA-FDF lat­tice with re­laxed set­tings, split el­e­ments, and higher-or­der op­tics of tol­er­a­ble strength al­lows im­prov­ing the dy­namic aper­ture to an ac­cept­able level. This con­tri­bu­tion dis­cusses the lat­tice fea­tures in de­tail and dif­fer­ent pos­si­ble op­er­a­tion schemes of a VLA-cSR.  
poster icon Poster MOPAB035 [1.405 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB035  
About • paper received ※ 10 May 2021       paper accepted ※ 27 May 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB036 Different Operation Regimes at the KIT Storage Ring KARA (Karlsruhe Research Accelerator) 163
 
  • A.I. Papash, M. Brosi, E. Huttel, A. Mochihashi, A.-S. Müller, R. Ruprecht, P. Schreiber, M. Schuh, N.J. Smale
    KIT, Eggenstein-Leopoldshafen, Germany
 
  The KIT stor­age ring KARA op­er­ates in a wide en­ergy range from 0.5 to 2.5 GeV. Dif­fer­ent op­er­a­tion modes have been im­ple­mented at KARA, so far, the dou­ble-bend achro­mat (DBA) lat­tice with non-dis­per­sive straight sec­tions, the the­o­ret­i­cal min­i­mum emit­tance (TME) lat­tice with dis­trib­uted dis­per­sion, dif­fer­ent ver­sions of low-com­paction fac­tor op­tics with highly stretched dis­per­sion func­tion. Short bunches of a few ps pulse width are avail­able at KARA. Low-al­pha op­tics has been sim­u­lated, tested and im­ple­mented in a wide op­er­a­tional range of the stor­age ring and is now rou­tinely used at 1.3 GeV for stud­ies of beam burst­ing ef­fects caused by co­her­ent syn­chro­tron ra­di­a­tion in the THz fre­quency range. Dif­fer­ent non-lin­ear ef­fects, in par­tic­u­lar resid­ual high-or­der com­po­nents of the mag­netic field, gen­er­ated in high-field su­per­con­duct­ing wig­glers have been stud­ied and cured. Based on good agree­ment be­tween com­puter sim­u­la­tions and ex­per­i­ments, a new op­er­a­tion mode at high ver­ti­cal tune was im­ple­mented. The beam per­for­mance dur­ing user op­er­a­tion as well as at low-al­pha regimes has been im­proved. A spe­cific optic with neg­a­tive com­paction fac­tor was sim­u­lated, tested and is in op­er­a­tion.  
poster icon Poster MOPAB036 [1.477 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB036  
About • paper received ※ 13 May 2021       paper accepted ※ 08 June 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB037 On Possibility of Alpha-buckets Detecting at the KIT Storage Ring KARA (Karlsruhe Research Accelerator) 167
 
  • A.I. Papash, T. Boltz, M. Brosi, A.-S. Müller, R. Ruprecht, P. Schreiber, M. Schuh, N.J. Smale
    KIT, Karlsruhe, Germany
 
  Com­puter stud­ies of lon­gi­tu­di­nal mo­tion have been per­formed with the ob­jec­tive to es­ti­mate the pos­si­bil­ity of de­tec­tion of al­pha-buck­ets at the KIT stor­age ring KARA (Karl­sruhe Re­search Ac­cel­er­a­tor). The lon­gi­tu­di­nal equa­tions of mo­tion and the Hamil­ton­ian were ex­panded to high order terms of the en­ergy de­vi­a­tion of par­ti­cles in a beam. Roots of third order equa­tion for three lead­ing terms of mo­men­tum com­paction fac­tor and free en­ergy in­de­pen­dent term were de­rived in a form suit­able for an­a­lyt­i­cal es­ti­ma­tions. Av­er­aged qua­dratic terms of closed orbit dis­tor­tions caused by mis­align­ment of mag­netic el­e­ments in a ring lead to orbit length­en­ing in­de­pen­dent of par­ti­cle en­ergy de­vi­a­tion. Par­ti­cle trans­verse ex­cur­sions were es­ti­mated and are taken into ac­count. Sim­u­la­tions have been bench-marked on ex­ist­ing ex­per­i­ments at Metrol­ogy Light Source (MLS) in Berlin (Ger­many) and SOLEIL (France). Pa­ra­me­ters of three si­mul­ta­ne­ous beams and alpha buck­ets at MLS and SOLEIL have been re­pro­duced with high ac­cu­racy. A com­puter model of KARA was used to pre­dict be­hav­ior and the dy­nam­ics of pos­si­ble si­mul­ta­ne­ous beams in the ring.  
poster icon Poster MOPAB037 [1.269 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB037  
About • paper received ※ 11 May 2021       paper accepted ※ 28 May 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB164 Miniature, High Strength Transport Line Design for Laser Plasma Accelerator-Driven FELs 561
 
  • S. Fatehi, A. Bernhard, A.-S. Müller, M.S. Ning
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05K19VKA PlasmaFEL (Federal Ministry of Education and Research).
Laser-plasma ac­cel­er­a­tion is an out­stand­ing can­di­date to drive the next-gen­er­a­tion com­pact light sources and FELs. To com­pen­sate large chro­matic ef­fects using novel com­pact beam optic el­e­ments in the beam trans­port line is re­quired. We aim at de­sign­ing minia­ture, high strength, nor­mal con­duct­ing and su­per­con­duct­ing trans­port line mag­nets and op­tics for cap­tur­ing and match­ing LPA-gen­er­ated elec­tron bunches to given ap­pli­ca­tions. Our pri­mary ap­pli­ca­tion case is a demon­stra­tion ex­per­i­ment for trans­verse gra­di­ent un­du­la­tor (TGU) FELs, to be per­formed at the JETI laser fa­cil­ity, Jena, Ger­many. In this con­tri­bu­tion, we pre­sent the cur­rent de­sign of the beam trans­port line mag­nets and the beam op­tics cal­cu­la­tions.
Laser Plasma Accelerators, FELs, Magnets, Beam Dynamics, Superconductivity, transverse gradient undulator
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB164  
About • paper received ※ 19 May 2021       paper accepted ※ 25 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB280 Split Ring Resonator Experiment - Simulation Results 888
 
  • J. Schäfer, B. Härer, A. Malygin, A.-S. Müller, M. Nabinger, M.J. Nasse, T. Schmelzer, M. Schuh, T. Windbichler
    KIT, Karlsruhe, Germany
 
  Funding: Supported by "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology (KSETA)" and European Union’s Horizon 2020 Research and Innovation programme.
FLUTE (Fer­n­in­frarot Linac- Und Test-Ex­per­i­ment) is a com­pact linac-based test fa­cil­ity for ac­cel­er­a­tor and di­ag­nos­tics R&D. An ex­am­ple for a new ac­cel­er­a­tor di­ag­nos­tics tool cur­rently stud­ied at FLUTE is the split-ring-res­onator (SRR) ex­per­i­ment, which aims to mea­sure the lon­gi­tu­di­nal bunch pro­file of fs-scale elec­tron bunches. Laser-gen­er­ated THz ra­di­a­tion is used to ex­cite a high fre­quency os­cil­lat­ing elec­tro­mag­netic field in the SRR. Par­ti­cles pass­ing through the SRR gap are time-de­pen­dently de­flected in the ver­ti­cal plane, which al­lows a ver­ti­cal streak­ing of an elec­tron bunch. This prin­ci­ple al­lows a di­ag­no­sis of the lon­gi­tu­di­nal bunch pro­file in the fem­tosec­ond time do­main and will be tested at FLUTE. This con­tri­bu­tion pre­sents an overview of the SRR ex­per­i­ment and the re­sults of var­i­ous track­ing sim­u­la­tions for dif­fer­ent sce­nar­ios as a func­tion of laser pulse length and bunch charge. Based on these re­sults pos­si­ble work­ing points for the ex­per­i­ments at FLUTE will be pro­posed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB280  
About • paper received ※ 19 May 2021       paper accepted ※ 21 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB293 Electro-Optical Diagnostics at KARA and FLUTE - Results and Prospects 927
 
  • G. Niehues, E. Bründermann, M. Caselle, S. Funkner, A.-S. Müller, M.J. Nasse, M.M. Patil, R. Ruprecht, M. Schuh, M. Weber, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: S.F. was funded by BMBF contract No. 05K16VKA, C. W. by BMBF contract number 05K19VKD. G.N. and E.B. acknowledge support by the Helmholtz President’s strategic fund IVF "Plasma Accelerators".
Elec­tro-op­ti­cal (EO) meth­ods are nowa­days well-proven di­ag­nos­tic tools, which are uti­lized to de­tect THz fields in count­less ex­per­i­ments. The world’s first near-field EO sam­pling mon­i­tor at an elec­tron stor­age ring was de­vel­oped and in­stalled at the KIT stor­age ring KARA (Karl­sruhe Re­search Ac­cel­er­a­tor) and op­ti­mized to de­tect lon­gi­tu­di­nal bunch pro­files. This ex­per­i­ment with other di­ag­nos­tic tech­niques builds a dis­trib­uted, syn­chro­nized sen­sor net­work to gain com­pre­hen­sive data about the phase-space of elec­tron bunches as well as the pro­duced co­her­ent syn­chro­tron ra­di­a­tion (CSR). These mea­sure­ments fa­cil­i­tate stud­ies of phys­i­cal con­di­tions to pro­vide, at the end, in­tense and sta­ble CSR in the THz range. At KIT, we also op­er­ate FLUTE (Fer­n­in­frarot Linac- und Test-Ex­per­i­ment), a new com­pact ver­sa­tile lin­ear ac­cel­er­a­tor as a test fa­cil­ity for novel tech­niques and di­ag­nos­tics. There, EO di­ag­nos­tics will be im­ple­mented to open up pos­si­bil­i­ties to eval­u­ate and com­pare new tech­niques for lon­gi­tu­di­nal bunch di­ag­nos­tics. In this con­tri­bu­tion, we will give an overview of re­sults achieved, the cur­rent sta­tus of the EO di­ag­nos­tic se­tups at KARA and FLUTE and dis­cuss fu­ture prospects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB293  
About • paper received ※ 19 May 2021       paper accepted ※ 07 July 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB294 Implementing Electro-Optical Diagnostics for Measuring the CSR Far-Field at KARA 931
 
  • C. Widmann, E. Bründermann, M. Caselle, S. Funkner, A.-S. Müller, M.J. Nasse, G. Niehues, M.M. Patil, C. Sax, J.L. Steinmann, M. Weber
    KIT, Karlsruhe, Germany
  • C. Mai
    DELTA, Dortmund, Germany
 
  Funding: This work was supported by BMBF ErUM-Pro project 05K19 STARTRAC, C.W. was funded under contract No. 05K19VDK, C.M. under contract No. 05K19PEC, S.F. under contract No. 05K16VKA.
For mea­sur­ing the tem­po­ral pro­file of the co­her­ent syn­chro­tron ra­di­a­tion (CSR) at the KIT stor­age ring KARA (Karl­sruhe Re­search Ac­cel­er­a­tor) an ex­per­i­men­tal setup based on elec­tro-op­ti­cal spec­tral de­cod­ing (EOSD) is cur­rently being im­ple­mented. The EOSD tech­nique al­lows sin­gle-shot, phase-sen­si­tive mea­sure­ments of the far-field ra­di­a­tion on a turn-by-turn basis at rates in the MHz range. There­fore, the re­sult­ing THz ra­di­a­tion from the dy­nam­ics of the bunch evo­lu­tion, e.g. the mi­crobunch­ing, can be ob­served with high tem­po­ral res­o­lu­tion. This far-field setup is part of the dis­trib­uted sen­sor net­work at KARA. Ad­di­tion­ally to the in­for­ma­tion ac­quired from the near-field EOSD spec­tral de­cod­ing and the hor­i­zon­tal bunch pro­file mon­i­tor, it en­ables to mon­i­tor the lon­gi­tu­di­nal phase-space of the bunch. In this con­tri­bu­tion, the char­ac­ter­i­za­tion of the far-field setup is sum­ma­rized and its im­ple­men­ta­tion is dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB294  
About • paper received ※ 19 May 2021       paper accepted ※ 07 June 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB087 Full Characterization of the Bunch-Compressor Dipoles for FLUTE 1585
 
  • Y. Nie, A. Bernhard, E. Bründermann, A.-S. Müller, M.J. Nasse, R. Ruprecht, J. Schäfer, M. Schuh, Y. Tong
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05H18VKRB1 HIRING (Federal Ministry of Education and Research).
The Fer­n­in­frarot Linac- Und Test-Ex­per­i­ment (FLUTE) is a KIT-op­er­ated linac-based test fa­cil­ity for ac­cel­er­a­tor re­search and de­vel­op­ment as well as a com­pact, ul­tra-broad­band and short-pulse ter­a­hertz (THz) source. As a key com­po­nent of FLUTE, the bunch com­pres­sor (chi­cane) con­sist­ing of four spe­cially de­signed dipoles will be used to com­press the 40-50 MeV elec­tron bunches after the linac down to sin­gle fs bunch length. The max­i­mum ver­ti­cal mag­netic field of the dipoles reach 0.22 T, with an ef­fec­tive length of 200 mm. The good field re­gion is ±40 mm and ±10.5 mm in the hor­i­zon­tal and ver­ti­cal di­rec­tion, re­spec­tively. The lat­est mea­sure­ment re­sults of the dipoles in terms of field ho­mo­gene­ity, ex­ci­ta­tion and field re­pro­ducibil­ity within the good field re­gions will be re­ported, which meet the pre­de­fined spec­i­fi­ca­tions. The mea­sured 3D mag­netic field dis­tri­b­u­tions have been used to per­form beam dy­nam­ics sim­u­la­tions of the bunch com­pres­sor. Ef­fects of the real field prop­er­ties on the beam dy­nam­ics, which are dif­fer­ent from that of the ASTRA built-in di­pole field, will be dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB087  
About • paper received ※ 10 May 2021       paper accepted ※ 27 May 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB163 Developing a 50 MeV LPA-Based Injector at ATHENA for a Compact Storage Ring 1765
 
  • E. Panofski, J. Dirkwinkel, T. Hülsenbusch, A.R. Maier, J. Osterhoff, G. Palmer, T. Parikh, P.A. Walker, P. Winkler
    DESY, Hamburg, Germany
  • C. Braun, T.F.J. Eichner, L. Hübner, S. Jalas, L. Jeppe, M. Kirchen, P. Messner, M. Schnepp, M. Trunk, C.M. Werle
    University of Hamburg, Hamburg, Germany
  • E. Bründermann, B. Härer, A.-S. Müller, C. Widmann
    KIT, Karlsruhe, Germany
  • M. Kaluza, A. Sävert
    HIJ, Jena, Germany
 
  The laser-dri­ven gen­er­a­tion of rel­a­tivis­tic elec­tron beams in plasma and their ac­cel­er­a­tion to high en­er­gies with GV/m-gra­di­ents has been suc­cess­fully demon­strated. Now, it is time to focus on the ap­pli­ca­tion of laser-plasma ac­cel­er­ated (LPA) beams. The "Ac­cel­er­a­tor Tech­nol­ogy HElmholtz iN­frA­struc­ture" (ATHENA) of the Helmholtz As­so­ci­a­tion fos­ters in­no­v­a­tive par­ti­cle ac­cel­er­a­tors and high-power laser tech­nol­ogy. As part of the ATHENAe pil­lar sev­eral dif­fer­ent ap­pli­ca­tions dri­ven by LPAs are to be de­vel­oped, such as a com­pact FEL, med­ical imag­ing and the first re­al­iza­tion of LPA-beam in­jec­tion into a stor­age ring. The lat­ter en­deavor is con­ducted in close col­lab­o­ra­tion be­tween Deutsche Elek­tro­nen-Syn­chro­tron (DESY), Karl­sruhe In­sti­tute of Tech­nol­ogy (KIT) and Helmholtz In­sti­tute Jena. In the cSTART pro­ject at KIT, a com­pact stor­age ring op­ti­mized for short bunches and suit­able to ac­cept LPA-based elec­tron bunches is in prepa­ra­tion. In this con­fer­ence con­tri­bu­tion we will in­tro­duce the 50 MeV LPA-based in­jec­tor and give an overview about the pro­ject goals. The key pa­ra­me­ters of the plasma in­jec­tor will be pre­sented. Fi­nally, the cur­rent sta­tus of the pro­ject will be sum­ma­rized.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB163  
About • paper received ※ 19 May 2021       paper accepted ※ 31 May 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB251 Impedance Studies of a Corrugated Pipe for KARA 2039
 
  • S. Maier, M. Brosi, A. Mochihashi, A.-S. Müller, M.J. Nasse, M. Schwarz
    KIT, Karlsruhe, Germany
 
  Funding: DFG project 431704792 in the ANR-DFG collaboration project ULTRASYNC and the DFG-funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology".
At the KIT stor­age ring KARA (KArl­sruhe Re­search Ac­cel­er­a­tor) it is planned to in­stall an im­ped­ance ma­nip­u­la­tion struc­ture in a ver­sa­tile cham­ber to study and even­tu­ally con­trol the in­flu­ence of an ad­di­tional im­ped­ance on the beam dy­nam­ics and the emit­ted co­her­ent syn­chro­tron ra­di­a­tion. For this pur­pose the im­ped­ance of a cor­ru­gated pipe is under in­ves­ti­ga­tion. In this con­tri­bu­tion, we pre­sent first re­sults of sim­u­la­tions show­ing the im­pact of dif­fer­ent struc­ture pa­ra­me­ters on its im­ped­ance and wake po­ten­tial.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB251  
About • paper received ※ 19 May 2021       paper accepted ※ 17 June 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB255 Longitudinal Beam Dynamics and Coherent Synchrotron Radiation at cSTART 2050
 
  • M. Schwarz, E. Bründermann, D. El Khechen, B. Härer, A. Malygin, A.-S. Müller, M.J. Nasse, A.I. Papash, R. Ruprecht, J. Schäfer, M. Schuh, P. Wesolowski
    KIT, Karlsruhe, Germany
 
  The com­pact STor­age ring for Ac­cel­er­a­tor Re­search and Tech­nol­ogy (cSTART) pro­ject aims to store elec­tron bunches of LWFA-like beams in a very large mo­men­tum ac­cep­tance stor­age ring. The pro­ject will be re­al­ized at the Karl­sruhe In­sti­tute of Tech­nol­ogy (KIT, Ger­many). Ini­tially, the Fer­n­in­frarot Linac- Und Test-Ex­per­i­ment (FLUTE), a source of ul­tra-short bunches, will serve as an in­jec­tor for cSTART to bench­mark and em­u­late laser-wake­field ac­cel­er­a­tor-like beams. In a sec­ond stage a laser-plasma ac­cel­er­a­tor will be used as an in­jec­tor, which is being de­vel­oped as part of the ATHENA pro­ject in col­lab­o­ra­tion with DESY and Helmholtz In­sti­tute Jena (HIJ). With an en­ergy of 50 MeV and damp­ing times of sev­eral sec­onds, the elec­tron beam does not reach equi­lib­rium emit­tance. Fur­ther­more, the crit­i­cal fre­quency of syn­chro­tron ra­di­a­tion is 53 THz and in the same order as the bunch spec­trum, which im­plies that the en­tire bunch ra­di­ates co­her­ently. We per­form lon­gi­tu­di­nal par­ti­cle track­ing sim­u­la­tions to in­ves­ti­gate the evo­lu­tion of the bunch length and spec­trum as well as the emit­ted co­her­ent syn­chro­tron ra­di­a­tion. Fi­nally, dif­fer­ent op­tions for the RF sys­tem are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB255  
About • paper received ※ 17 May 2021       paper accepted ※ 21 June 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB267 Investigation of Beam Impedance and Heat Load in a High Temperature Superconducting Undulator 2089
 
  • D. Astapovych, H. De Gersem, E. Gjonaj
    TEMF, TU Darmstadt, Darmstadt, Germany
  • T.A. Arndt, E. Bründermann, N. Glamann, A.W. Grau, B. Krasch, A.-S. Müller, R. Nast, D. Saez de Jauregui, A. Will
    KIT, Karlsruhe, Germany
 
  The use of high tem­per­a­ture su­per­con­duct­ing (HTS) ma­te­ri­als can en­hance the per­for­mance of su­per­con­duct­ing un­du­la­tors (SCU), which can later be im­ple­mented in free elec­tron laser fa­cil­i­ties, syn­chro­tron stor­age rings and light sources. In par­tic­u­lar, the short pe­riod < 10 mm un­du­la­tors with nar­row mag­netic gap < 4 mm are rel­e­vant. One of the promis­ing ap­proaches con­sid­ers a 10 cm me­an­der-struc­tured HTS tapes stacked one above the other. Then, the HTS tape is wound on the SCU. The idea of this joint­less un­du­la­tor has been pro­posed by, and is being fur­ther de­vel­oped at KIT. Since min­i­miz­ing the dif­fer­ent sources of heat load is a crit­i­cal issue for all SCUs, a de­tailed analy­sis of the im­ped­ance and heat load is re­quired to meet the cryo­genic sys­tem de­sign. The dom­i­nant heat source is an­tic­i­pated to be the re­sis­tive sur­face loss, which is one of the sub­jects of this study. Con­sid­er­ing the com­plex­ity of the HTS tape, the im­ped­ance model in­cludes the geo­met­ri­cal struc­ture of the HTS tapes as well as the anom­alous skin ef­fect. The re­sults of the nu­mer­i­cal in­ves­ti­ga­tion per­formed by the help of the CST PS solver will be pre­sented and dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB267  
About • paper received ※ 18 May 2021       paper accepted ※ 26 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB270 Thermal Transition Design and Beam Heat-load Estimation for the COLDDIAG Refurbishment 2097
 
  • H.J. Cha, N. Glamann, A.W. Grau, A.-S. Müller, D. Saez de Jauregui
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Funding: This work is supported by the BMBF project 05H18VKRB1 HIRING (Federal Ministry of Education and Research).
The COLD­DIAG (cold vac­uum cham­ber for beam heat load di­ag­nos­tics) de­vel­oped at Karl­sruhe In­sti­tute of Tech­nol­ogy has been mod­i­fied for more stud­ies at cryo­genic tem­per­a­tures dif­fer­ent from the pre­vi­ous op­er­a­tions at 4 K in a cold bore and at 50 K in a ther­mal shield. The key com­po­nents in this cam­paign are two ther­mal tran­si­tions con­nect­ing both ends of the bore at 50 K with the shield at the same or higher tem­per­a­ture. In this paper, we pre­sent de­sign ef­forts for the com­pact tran­si­tions, al­lowed heat in­takes to the cool­ing power mar­gin and me­chan­i­cal ro­bust­ness in the cryo­genic en­vi­ron­ment. A man­u­fac­ture scheme for the tran­si­tion and its pe­riph­eral is also given. In ad­di­tion, the beam heat loads in the re­fur­bished COLD­DIAG are es­ti­mated in terms of the ac­cel­er­a­tor beam pa­ra­me­ters.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB270  
About • paper received ※ 12 May 2021       paper accepted ※ 02 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB083 Effect of Negative Momentum Compaction Operation on the Current-Dependent Bunch Length 2786
 
  • P. Schreiber, T. Boltz, M. Brosi, B. Härer, A. Mochihashi, A.-S. Müller, A.I. Papash, R. Ruprecht, M. Schuh
    KIT, Karlsruhe, Germany
 
  Funding: Funded by the European Union’s Horizon 2020 Research and Innovation programme, Grant Agreement No 730871. P.S, T.B are supported by DFG-funded Karlsruhe School of Elementary and Astroparticle Physics.
New op­er­a­tion modes are often con­sid­ered dur­ing the de­vel­op­ment of new syn­chro­tron light sources. An un­der­stand­ing of the ef­fects in­volved is in­evitable for a suc­cess­ful op­er­a­tion of these schemes. At the KIT stor­age ring KARA (Karl­sruhe Re­search Ac­cel­er­a­tor), new modes can be im­ple­mented and tested at var­i­ous en­er­gies, em­ploy­ing a va­ri­ety of per­for­mant beam di­ag­nos­tics de­vices. Neg­a­tive mo­men­tum com­paction op­tics at var­i­ous en­er­gies have been es­tab­lished. Also, the in­flu­ence of a neg­a­tive mo­men­tum com­paction fac­tor on dif­fer­ent ef­fects has been in­ves­ti­gated. This con­tri­bu­tion com­prises a short re­port on the sta­tus of the im­ple­men­ta­tion of a neg­a­tive mo­men­tum com­paction op­tics at KARA. Ad­di­tion­ally, first mea­sure­ments of the changes to the cur­rent-de­pen­dent bunch length will be pre­sented.
 
poster icon Poster WEPAB083 [1.129 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB083  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB103 Systematic Beam Parameter Studies at the Injector Section of FLUTE 2837
 
  • T. Schmelzer, E. Bründermann, D. Hoffmann, I. Križnar, S. Marsching, A.-S. Müller, M.J. Nasse, R. Ruprecht, J. Schäfer, M. Schuh, N.J. Smale, P. Wesolowski, T. Windbichler
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the DFG-funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology (KSETA)"
FLUTE (Fer­n­in­frarot Linac- und Test-Ex­per­i­ment) is a com­pact linac-based test fa­cil­ity for ac­cel­er­a­tor R&D and source of in­tense THz ra­di­a­tion for pho­ton sci­ence. In prepa­ra­tion for the next ex­per­i­ments, the elec­tron beam of the in­jec­tor sec­tion of FLUTE has been char­ac­ter­ized. In sys­tem­atic stud­ies the elec­tron beam pa­ra­me­ters, e.g., beam en­ergy and emit­tance, are mea­sured with sev­eral di­ag­nos­tic sys­tems. This knowl­edge al­lows the es­tab­lish­ment of dif­fer­ent op­er­a­tion set­tings and the op­ti­miza­tion of elec­tron beam pa­ra­me­ters for fu­ture ex­per­i­ments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB103  
About • paper received ※ 19 May 2021       paper accepted ※ 01 September 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB135 Progress of the Development of a Superconducting Undulator as a THz Source for FELs 2933
 
  • J. Gethmann, S. Casalbuoni, N. Glamann, A.W. Grau, A.-S. Müller, D. Saez de Jauregui
    KIT, Eggenstein-Leopoldshafen, Germany
  • D. Astapovych, H. De Gersem, E. Gjonaj
    TEMF, TU Darmstadt, Darmstadt, Germany
  • S. Casalbuoni
    EuXFEL, Schenefeld, Germany
 
  Funding: This work is supported by the BMBF project 05K19VK2 SCUXFEL (Federal Ministry of Education and Research) and by the DFG-funded Doctoral School KSETA: Science and Technology.
To pro­duce ra­di­a­tion in the THz fre­quency range at X-ray Free Elec­tron Lasers, un­du­la­tors with large pe­riod length, high fields, and large gaps are re­quired. These de­mands can be ful­filled by su­per­con­duct­ing un­du­la­tors. In this con­tri­bu­tion, the ac­tual re­quire­ments on the main pa­ra­me­ters of such a su­per­con­duct­ing un­du­la­tor will be dis­cussed and the progress of the de­sign will be dis­cussed. In ad­di­tion, beam im­ped­ance and heat load re­sults ob­tained an­a­lyt­i­cally as well as by large-scale wake­field sim­u­la­tions will be pre­sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB135  
About • paper received ※ 19 May 2021       paper accepted ※ 02 July 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB233 Excitation of Micro-Bunching in Short Electron Bunches Using RF Amplitude Modulation 3173
 
  • T. Boltz, E. Blomley, M. Brosi, E. Bründermann, B. Härer, A. Mochihashi, A.-S. Müller, P. Schreiber, M. Schuh, M. Yan
    KIT, Karlsruhe, Germany
 
  In its short-bunch op­er­a­tion mode, the KIT stor­age ring KARA pro­vides pi­cosec­ond-long elec­tron bunches, which emit co­her­ent syn­chro­tron ra­di­a­tion (CSR) up to the ter­a­hertz fre­quency range. Due to the high spa­tial com­pres­sion under these con­di­tions, the self-in­ter­ac­tion of the bunch with its own emit­ted CSR in­duces a wake-field, which sig­nif­i­cantly in­flu­ences the lon­gi­tu­di­nal charge dis­tri­b­u­tion. Above a given thresh­old cur­rent, this leads to the for­ma­tion of dy­nam­i­cally evolv­ing mi­cro-struc­tures within the bunch and is thus called mi­cro-bunch­ing in­sta­bil­ity. As CSR is emit­ted at wave­lengths cor­re­spond­ing to the spa­tial di­men­sion of the emit­ter, these small struc­tures lead to an in­creased emis­sion of CSR at higher fre­quen­cies. The in­sta­bil­ity is there­fore de­lib­er­ately in­duced at KARA to pro­vide in­tense THz ra­di­a­tion to ded­i­cated ex­per­i­ments. To fur­ther in­crease the emit­ted power in the de­sired fre­quency range, we con­sider the po­ten­tial of RF am­pli­tude mod­u­la­tions to in­ten­tion­ally ex­cite this form of mi­cro-bunch­ing in short elec­tron bunches. This work is sup­ported by the BMBF pro­ject 05K19VKC TiMo (Fed­eral Min­istry of Ed­u­ca­tion and Re­search).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB233  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB240 Increasing the Single-Bunch Instability Threshold by Bunch Splitting Due to RF Phase Modulation 3193
 
  • J.L. Steinmann, E. Blomley, M. Brosi, E. Bründermann, A. Mochihashi, A.-S. Müller, M. Schuh, P. Schönfeldt
    KIT, Karlsruhe, Germany
 
  Funding: This work is funded by the BMBF contract number: 05K16VKA.
RF phase mod­u­la­tion at twice the syn­chro­tron fre­quency can be used to split a stored elec­tron bunch into two or more bunch­lets or­bit­ing each other. We re­port on time-re­solved mea­sure­ments at the Karl­sruhe Re­search Ac­cel­er­a­tor (KARA), where this bunch split­ting was used to in­crease the thresh­old cur­rent of the mi­crobunch­ing in­sta­bil­ity, hap­pen­ing in the short-bunch op­er­a­tion mode. Turn­ing the mod­u­la­tion on and off re­pro­ducibly af­fects the saw­tooth be­hav­ior of the emit­ted co­her­ent syn­chro­tron ra­di­a­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB240  
About • paper received ※ 19 May 2021       paper accepted ※ 08 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB246 Influence of Different Beam Energies on the Micro-Bunching Instability 3209
 
  • M. Brosi, A.-S. Müller, P. Schreiber, M. Schuh
    KIT, Karlsruhe, Germany
 
  Dur­ing the op­er­a­tion of an elec­tron syn­chro­tron with short elec­tron bunches, the beam dy­nam­ics are in­flu­enced by the oc­cur­rence of the mi­cro-bunch­ing in­sta­bil­ity. This col­lec­tive in­sta­bil­ity is caused by the self-in­ter­ac­tion of a short elec­tron bunch with its own emit­ted co­her­ent syn­chro­tron ra­di­a­tion (CSR). Above a cer­tain thresh­old bunch cur­rent dy­namic mi­cro-struc­tures start to occur on the lon­gi­tu­di­nal phase space den­sity. The re­sult­ing dy­nam­ics de­pend on var­i­ous pa­ra­me­ters and were pre­vi­ously in­ves­ti­gated in re­la­tion to, amongst oth­ers, the mo­men­tum com­paction fac­tor and the ac­cel­er­a­tion volt­age. In this con­tri­bu­tion, the in­flu­ence of the en­ergy of the elec­trons on the dy­nam­ics of the mi­cro-bunch­ing in­sta­bil­ity is stud­ied based on mea­sure­ments at the KIT stor­age ring KARA (Karl­sruhe Re­search Ac­cel­er­a­tor).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB246  
About • paper received ※ 19 May 2021       paper accepted ※ 08 July 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB289 Machine Learning Based Spatial Light Modulator Control for the Photoinjector Laser at FLUTE 3332
 
  • C. Xu, E. Bründermann, A.-S. Müller, M.J. Nasse, A. Santamaria Garcia, C. Sax, C. Widmann
    KIT, Karlsruhe, Germany
  • A. Eichler
    DESY, Hamburg, Germany
 
  Funding: C. Xu acknowledges the support by the DFG-funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology".
FLUTE (Fer­n­in­frarot Linac- und Test-Ex­per­i­ment) at KIT is a com­pact linac-based test fa­cil­ity for novel ac­cel­er­a­tor tech­nol­ogy and a source of in­tense THz ra­di­a­tion. FLUTE is de­signed to pro­vide a wide range of elec­tron bunch charges from the pC- to nC-range, high elec­tric fields up to 1.2 GV/m, and ul­tra-short THz pulses down to the fs-timescale. The elec­trons are gen­er­ated at the RF pho­toin­jec­tor, where the elec­tron gun is dri­ven by a com­mer­cial ti­ta­nium sap­phire laser. In this kind of setup the elec­tron beam prop­er­ties are de­ter­mined by the pho­toin­jec­tor, but more im­por­tantly by the char­ac­ter­is­tics of the laser pulses. Spa­tial light mod­u­la­tors can be used to trans­versely and lon­gi­tu­di­nally shape the laser pulse, of­fer­ing a flex­i­ble way to shape the laser beam and sub­se­quently the elec­tron beam, in­flu­enc­ing the pro­duced THz pulses. How­ever, non­lin­ear ef­fects in­her­ent to the laser ma­nip­u­la­tion (trans­porta­tion, com­pres­sion, third har­monic gen­er­a­tion) can dis­tort the orig­i­nal pulse. In this paper we pro­pose to use ma­chine learn­ing meth­ods to ma­nip­u­late the laser and elec­tron bunch, aim­ing to gen­er­ate tai­lor-made THz pulses. The method is demon­strated ex­per­i­men­tally in a test setup.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB289  
About • paper received ※ 19 May 2021       paper accepted ※ 06 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB331 Application of KALYPSO as a Diagnostic Tool for Beam and Spectral Analysis 3451
 
  • M.M. Patil, E. Bründermann, M. Caselle, A. Ebersoldt, S. Funkner, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, J.L. Steinmann, M. Weber, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05K19VKD STARTRAC and DFG-funded Doctoral School ’Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology’
KA­LYPSO is a novel de­tec­tor ca­pa­ble of op­er­at­ing at frame rates up to 12 MHz de­vel­oped and tested at the in­sti­tute of data pro­cess­ing and elec­tron­ics (IPE) and em­ployed at Karl­sruhe Re­search Ac­cel­er­a­tor (KARA) which is part of the Test Fa­cil­ity and Syn­chro­tron Ra­di­a­tion Source KIT. This de­tec­tor con­sists of sil­i­con, In­GaAs, PbS, or PbSe line array sen­sor with spec­tral sen­si­tiv­ity from 350 nm to 5000 nm. The un­prece­dented frame rate of this de­tec­tor is achieved by a cus­tom-de­signed ASIC read­out chip. The FPGA-read­out ar­chi­tec­ture en­ables con­tin­u­ous data ac­qui­si­tion and real-time data pro­cess­ing. Such a de­tec­tor has var­i­ous ap­pli­ca­tions in the fields of beam di­ag­nos­tics and spec­tral analy­sis. KA­LYPSO is cur­rently em­ployed at var­i­ous syn­chro­tron fa­cil­i­ties for elec­tro-op­ti­cal spec­tral de­cod­ing (EOSD) to study the lon­gi­tu­di­nal pro­file of the elec­tron beam, to study the en­ergy spread of the elec­tron beam, tun­ing of free-elec­tron lasers (FELs), and also in char­ac­ter­iz­ing laser spec­tra. This con­tri­bu­tion will pre­sent an overview of the re­sults from the men­tioned ap­pli­ca­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB331  
About • paper received ※ 19 May 2021       paper accepted ※ 22 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB042 Bending Radius Limits of Different Coated REBCO Conductor Tapes - An Experimental Investigation with Regard to HTS Undulators 3837
 
  • S.C. Richter, A. Bernhard, A. Drechsler, A.-S. Müller, B. Ringsdorf, S.I. Schlachter
    KIT, Karlsruhe, Germany
  • S.C. Richter, D. Schoerling
    CERN, Geneva, Switzerland
 
  Funding: This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 05E18CHA).
Com­pact FELs re­quire short-pe­riod, high-field un­du­la­tors in com­bi­na­tion with com­pact ac­cel­er­a­tor struc­tures to pro­duce co­her­ent light up to X-rays. Like­wise, for the pro­duc­tion of low emit­tance positron beams for fu­ture lep­ton col­lid­ers, like CLIC or FCC-ee, high-field damp­ing wig­glers are re­quired. Ap­ply­ing high-tem­per­a­ture su­per­con­duc­tors in form of coated REBCO tape con­duc­tors al­lows reach­ing higher mag­netic fields and larger op­er­at­ing mar­gins as com­pared to low-tem­per­a­ture su­per­con­duc­tors like Nb-Ti or Nb3Sn. How­ever, short un­du­la­tor pe­ri­ods like 13 mm may re­quire bend­ing radii of the con­duc­tor smaller than 5 mm in­duc­ing sig­nif­i­cant bend­ing strain on the su­per­con­duct­ing layer and may harm its con­duct­ing prop­er­ties. In this paper, we pre­sent our de­signed bend­ing rig and ex­per­i­men­tal re­sults for REBCO tape con­duc­tors from var­i­ous man­u­fac­tur­ers and with dif­fer­ent prop­er­ties. In­ves­ti­gated bend­ing radii reach from 20 mm down to 1 mm and op­tion­ally in­clude half of a he­li­cal twist. To rep­re­sent mag­net wind­ing pro­ce­dures, the sam­ples were bent at room tem­per­a­ture and then cooled down to T = 77 K in the bent state to test for po­ten­tial degra­da­tion of the su­per­con­duct­ing prop­er­ties.
 
poster icon Poster THPAB042 [1.871 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB042  
About • paper received ※ 19 May 2021       paper accepted ※ 18 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB048 Design and Fabrication Concepts of a Compact Undulator with Laser-Structured 2G-HTS Tapes 3851
 
  • A. Will, T.A. Arndt, E. Bründermann, N. Glamann, A.W. Grau, B. Krasch, A.-S. Müller, R. Nast, D. Saez de Jauregui
    KIT, Eggenstein-Leopoldshafen, Germany
  • D. Astapovych, H. De Gersem, E. Gjonaj
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  To pro­duce small-scale high-field un­du­la­tors for table-top free elec­tron lasers (FELs), com­pact de­signs have been pro­posed using high tem­per­a­ture su­per­con­duct­ing (HTS) tapes, which show both large crit­i­cal cur­rent den­si­ties and high crit­i­cal mag­netic fields with a total tape thick­ness of about 50 μm and a width of up to 12 mm. In­stead of wind­ing coils, a me­an­der struc­ture can be laser-scribed di­rectly into the su­per­con­duc­tor layer, guid­ing the cur­rent path on a quasi-si­nu­soidal tra­jec­tory. Stack­ing pairs of such scribed tapes al­lows the gen­er­a­tion of the de­sired si­nu­soidal mag­netic fields above the tape plane, along the tape axis. Two prac­ti­cally fea­si­ble de­signs are pre­sented, which are cur­rently under con­struc­tion at KIT: A coil con­cept wound from a sin­gle struc­tured tape with a length of 15 m, which is a pro­gres­sion of a de­sign that has been pre­sented al­ready in the past, as well as a novel stacked and sol­dered de­sign, made from 25 cm long struc­tured tapes, sol­dered in a zig-zag-pat­tern. In this con­tri­bu­tion the de­signs are briefly re­capped and the ex­per­i­men­tal progress is pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB048  
About • paper received ※ 19 May 2021       paper accepted ※ 12 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB126 Operational Experience and Characterization of a Superconducting Transverse Gradient Undulator for Compact Laser Wakefield Accelerator-Driven FEL 4009
 
  • K. Damminsek, A. Bernhard, J. Gethmann, A.W. Grau, A.-S. Müller, Y. Nie, M.S. Ning, S.C. Richter, R. Rossmanith
    KIT, Karlsruhe, Germany
 
  A 40-pe­riod su­per­con­duct­ing trans­verse gra­di­ent un­du­la­tor (TGU) has been de­signed and fab­ri­cated at Karl­sruhe In­sti­tute of Tech­nol­ogy (KIT). Com­bin­ing a TGU with a Laser Wake­field Ac­cel­er­a­tor (LWFA) is a po­ten­tial key for re­al­iz­ing an ex­tremely com­pact Free Elec­tron Laser (FEL) ra­di­a­tion source. The TGU scheme is a vi­able op­tion to com­pen­sate the chal­leng­ing prop­er­ties of the LWFA elec­tron beam in terms of beam di­ver­gence and en­ergy spread. In this con­tri­bu­tion, we re­port on the op­er­a­tional ex­pe­ri­ence of this TGU in­side its own cryo­stat and show the cur­rent sta­tus of the TGU and the fur­ther plan for ex­per­i­ments. This work is sup­ported by the BMBF pro­ject 05K19VKA Plas­maFEL (Fed­eral Min­istry of Ed­u­ca­tion and Re­search).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB126  
About • paper received ※ 19 May 2021       paper accepted ※ 25 August 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB251 Efficient Terahertz Generation by Tilted-Pulse-Front Pumping in Lithium Niobate for the Split-Ring Resonator Experiment at FLUTE 4299
 
  • M. Nabinger, E. Bründermann, S. Funkner, B. Härer, A.-S. Müller, M.J. Nasse, G. Niehues, R. Ruprecht, J. Schäfer, T. Schmelzer, N.J. Smale
    KIT, Karlsruhe, Germany
  • M.M. Dehler, R. Ischebeck, M. Moser, V. Schlott
    PSI, Villigen PSI, Switzerland
  • T. Feurer, M. Hayati, Z. Ollmann
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
 
  Funding: This work is co-funded via the European Union’s H2020 research and innovation program, GA No 730871, ARIES.
A com­pact, lon­gi­tu­di­nal di­ag­nos­tics for fs-scale elec­tron bunches using a THz elec­tric-field tran­sient in a split-ring res­onator (SRR) for streak­ing will be tested at the Fer­n­in­frarot Linac- Und Test- Ex­per­i­ment (FLUTE). For this new streak­ing tech­nique, in­ten­sive THz pulses are re­quired, which will be gen­er­ated by laser-based op­ti­cal rec­ti­fi­ca­tion. We pre­sent a setup for gen­er­at­ing THz pulses using tilted-pulse-front pump­ing in lithium nio­bate at room tem­per­a­ture. Ex­cited by an 800 nm Ti:Sa pump laser with 35 fs band­width-lim­ited pulse length, con­ver­sion ef­fi­cien­cies up to 0.027% were achieved. Fur­ther­more, the sta­tus of the SRR ex­per­i­ment is shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB251  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC03 Modern Ultra-Fast Detectors for Online Beam Diagnostics 4540
 
  • M.M. Patil, E. Bründermann, M. Caselle, A. Ebersoldt, S. Funkner, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, J.L. Steinmann, W. Wang, M. Weber, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05K19VKD STARTRAC and DFG-funded Doctoral School ’Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology’
Syn­chro­tron light sources op­er­ate with bunch rep­e­ti­tion rates in the MHz regime. The lon­gi­tu­di­nal and trans­verse beam dy­nam­ics of these elec­tron bunches can be in­ves­ti­gated and char­ac­ter­ized by ex­per­i­ments em­ploy­ing lin­ear array de­tec­tors. To im­prove the per­for­mance of mod­ern beam di­ag­nos­tics and over­come the lim­i­ta­tions of com­mer­cially avail­able de­tec­tors, we have at KIT de­vel­oped KA­LYPSO, a de­tec­tor sys­tem op­er­at­ing with an un­prece­dented frame rate of up to 12 MHz. To fa­cil­i­tate the in­te­gra­tion in dif­fer­ent ex­per­i­ments, a mod­u­lar ar­chi­tec­ture has been uti­lized. Dif­fer­ent semi­con­duc­tor mi­crostrip sen­sors based on Si, In­GaAs, PbS, and PbSe can be con­nected to the cus­tom-de­signed low noise front-end ASIC to op­ti­mize the quan­tum ef­fi­ciency at dif­fer­ent pho­ton en­er­gies, rang­ing from near-UV, vis­i­ble, and up to near-IR. The front-end elec­tron­ics are in­te­grated within a het­ero­ge­neous DAQ con­sist­ing of FPGAs and GPUs, which al­lows the im­ple­men­ta­tion of real-time data pro­cess­ing. This de­tec­tor is cur­rently in­stalled at KARA, Eu­ro­pean XFEL, FLASH, Soleil, DELTA. In this con­tri­bu­tion, we pre­sent the de­tec­tor ar­chi­tec­ture, the per­for­mance re­sults, and the on­go­ing tech­ni­cal de­vel­op­ments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXC03  
About • paper received ※ 19 May 2021       paper accepted ※ 22 July 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)