MC2: Photon Sources and Electron Accelerators
T02 Electron Sources
Paper Title Page
TUPTS011 Vacuum Lifetime and Surface Charge Limit Investigations Concerning High Intensity Spin-polarized Photoinjectors 1954
 
  • S. Friederich, K. Aulenbacher, C. Matejcek
    IKP, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
 
  Funding: DFG excellence initiative PRISMA+, Bundesministerium für Bildung und Forschung "Verbundforschung FKZ 05K16UMA"
The Small Thermalized Electron Source at Mainz (STEAM) is a dc photoemission source. It is designed to operate at up to 200kV bias voltage with an accelerating field of up to 5 MV/m at the cathode surface. In several experiments, the properties of GaAs operating under the conditions of spin-polarized photoemission were investigated. Its performance, quantum efficiency lifetime and surface charge limit observations for bulk-GaAs will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS011  
About • paper received ※ 29 April 2019       paper accepted ※ 28 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS012 Emittance Reduction of RF Photoinjector Generated Electron Beams By Transverse Laser Beam Shaping 1958
 
  • M. Groß, P. Boonpornprasert, Y. Chen, J.D. Good, H. Huck, I.I. Isaev, C. Koschitzki, M. Krasilnikov, S. Lal, X. Li, O. Lishilin, G. Loisch, D. Melkumyan, S.K. Mohanty, R. Niemczyk, A. Oppelt, H.J. Qian, H. Shaker, G. Shu, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • I. Will
    MBI, Berlin, Germany
 
  Laser pulse shaping is one of the key elements to generate low emittance electron beams with RF photoinjectors. Ultimately high performance can be achieved with ellipsoidal laser pulses, but 3-dimensional shaping is challenging. High beam quality can also be reached by simple transverse pulse shaping, which has demonstrated improved beam emittance compared to a transversely uniform laser in the ‘pancake’ photoemission regime. In this contribution we present the truncation of a Gaussian laser at a radius of approximately one σ in the intermediate (electron bunch length directly after emission about the same as radius) photoemission regime with high acceleration gradients (up to 60 MV/m). This type of electron bunch is used e.g. at the European XFEL and FLASH free electron lasers at DESY, Hamburg site and is being investigated in detail at the Photoinjector Test facility at DESY in Zeuthen (PITZ). Here we present ray-tracing simulations and experimental data of a laser beamline upgrade enabling variable transverse truncation. Initial projected emittance measurements taken with help of this setup are shown, as well as supporting beam dynamics simulations. Additional simulations show the potential for substantial reduction of slice emittance at PITZ.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS012  
About • paper received ※ 24 April 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS014 SINGLE SHOT CATHODE TRANSVERSE MOMENTUM IMAGING IN PHOTOINJECTORS 1964
SUSPFO016   use link to see paper's listing under its alternate paper code  
 
  • P.W. Huang, Y. Chen, J.D. Good, M. Groß, I.I. Isaev, C. Koschitzki, M. Krasilnikov, S. Lal, X. Li, O. Lishilin, D. Melkumyan, R. Niemczyk, A. Oppelt, H.J. Qian, H. Shaker, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • D. Filippetto, F. Sannibale
    LBNL, Berkeley, California, USA
  • C.-X. Tang
    TUB, Beijing, People’s Republic of China
  • W. Wan
    ShanghaiTech University, Shanghai, People’s Republic of China
 
  In state of the art photoinjector electron sources, cathode performance determines the lower limit of achievable beam emittance. Measuring the thermal emittance at the photocathodes in electron guns is of vital importance for improving the injectors. Traditional methods, like solenoid scan, pepper-pot, need multi-shots and are time-consuming, therefore suffer from machine stability. Here we propose a new method, named cathode transverse momentum imaging. By tuning the gun solenoid focusing, the electrons’ transverse momentum at the cathode is imaged to a downstream screen, which enables a single shot measurement. Several experiments have been done at the Photo Injector Test Facility at DESY in Zeuthen (PITZ) with a Cs2Te cathode. Measurements of cathode transverse momentum, the corresponding spectra, cathode transverse momentum map and its correlation with surface electric field are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS014  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS015 Design Steps Towards an Electron Source for Ultrafast Electron Diffraction at DELTA 1968
 
  • D. Krieg, S. Khan
    DELTA, Dortmund, Germany
  • T.J. Albert, K. Sokolowski-Tinten
    Universität Duisburg-Essen, Duisburg, Germany
 
  Funding: MERCUR Pr-2017-0002
Ultrafast electron diffraction (UED) is a pump-probe technique to explore the structural dynamics of matter, combining sub-angstrom De-Broglie wavelength of electrons with femtosecond time resolution. UED experiments require ultrashort laser pulses to pump a sample, electron bunches with small emittance and ultrashort length to analyze the state of the sample and excellent control of the delay between them. Electrons accelerated to a few MeV in a photocathode gun offer significant advantages compared to keV electrons from electrostatic electron sources regarding emittance, bunch length and, due to the reduction of space charge effects, bunch charge. Furthermore, thicker samples and hence a wider range of possible materials are enabled by the longer mean free path of MeV electrons. In this paper, design steps towards a university-based UED facility with ultrashort and low-emittance MeV electron bunches are presented, including the transverse and longitudinal focusing schemes, which minimize space charge effects and nonlinearities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS015  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS026 Negative Electron Affinity GaAs Cathode Activation With CsKTe Thin Film 1986
 
  • M. Kuriki
    KEK, Ibaraki, Japan
  • K. Masaki
    HU/AdSM, Higashi-Hiroshima, Japan
 
  Funding: This work is partly supported by Japan-US Cooperative grant for scientific studies, Grant aid for scientific study by MEXT Japan (KAKENHI).
Negative Electron Affinity (NEA) GaAs cathode is an unique device which can generate a highly polarized electron beam with circularly polarized light. The NEA surface is conventionally made by Cs and \rm O/NF3 adsorption on the cleaned p-doped GaAs crystal, but the robustness of the cathode is very limited, so that the electron emission is easily lost by residual gas adsorption, ion back-bombardment, etc. To improve the cathode robustness, NEA activation with a stable thin-film on GaAs surface according to Hetero junction hypothesis has been proposed by the author. An experiment of the NEA activation with CsKTe thin film was carried out at Hiroshima University and a significant electron emission with 1.43 eV photon was observed which strongly suggested NEA activation. The cathode showed 16 to 20 times improvement of lifetime comparing to GaAs activated with Cs and O.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS026  
About • paper received ※ 26 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS046 Commissioning of a Compact THz Source Based on FEL 2030
 
  • Y.J. Pei, G. Feng, X.Y. He, Y. Hong, D. Jia, P. Lu, S. Lu, L. Shang, B.G. Sun, Zh.X. Tang, W. Wang, X.Q. Wang, W. Wei
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • L. Cao, Q.S. Chen, Q. Fu, T. Hu, P. Tan, Y.Q. Xiong
    HUST, Wuhan, People’s Republic of China
  • G. Huang
    IMP/CAS, Lanzhou, People’s Republic of China
  • L.G. Shen, F. Zhang
    USTC/PMPI, Hefei, Anhui, People’s Republic of China
 
  The layout of the THz source based on FEL was de-scribed in this paper. The THz source was based on a FEL which was composed of a compact 8-14MeV LINAC, undulator, optical resonance, THz wave measurement system and so on. The facility was designed in 2013 and the typical running parameter got in 2017 were as the following: energy is of 12.7MeV, energy spread is of 0.3%, macro-pulse is of 4 μs, pulse length of micro-pulse is of 6ps, emittance is of 24 mm.mrad. After that the ma-chine was commissioning for production THz radiation. In November 2018, the THz wave was test and got THz wave signal, the spectrum was also got. This year, we plan to measure the output power of the THz source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS046  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS047 Improvement of 6D Brightness by a 1.4-cell Photocathode RF Gun for MeV Ultrafast Electron Diffraction 2033
SUSPFO069   use link to see paper's listing under its alternate paper code  
 
  • Y. Song
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
  • K. Fan, C.-Y. Tsai, Y.T. Yang
    HUST, Wuhan, People’s Republic of China
  • J. Yang
    ISIR, Osaka, Japan
 
  Recent research indicates that ultrafast electron diffraction and microscopy (UED/M) have unprecedented potential in probing ultrafast dynamic processes, especially in organic and biological materials. However, reaching the required brightness while maintaining high spatiotemporal resolution requires new design of electron source. In order to produce ultrashort electron beam with extreme high brightness, a 1.4-cell RF gun is being developed to reach higher acceleration gradient near the photocathode and thus suppress the space charge effect in the low energy region. Simulation of the 1.4-cell RF photocathode gun shows considerable improvement in bunch length, emittance and energy spread, which all lead to better temporal and spatial resolution comparing to traditional 1.6-cell RF photocathode gun. The results demonstrate the feasibility of sub-ps temporal resolution with normalized emittance less than 0.1 πmm·mrad while maintaining 1 pC electron pulse.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS047  
About • paper received ※ 24 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS052 Conceptual Design of a High-Performance Injector Based on Rf-Gated Gridded Thermionic Gun for Thz Fel 2046
 
  • P. Yang, H.M. Chen, T. Hu, J.J. Li, Y. Lu
    HUST, Wuhan, People’s Republic of China
  • G.Y. Feng, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Free-Electron Laser (FEL) has higher requirements on electron beam properties, for example, low transverse emittance, small energy spread, short bunch length and high peak current. Taking compactness and economy into account, we aim to design a high-performance linear accelerator based on a RF-gated gridded thermionic electron gun, which will be used as the injector of the oscillator-type THz FEL facility at Huazhong University of Science and Technology of China. The RF-gated grid will be modulated with the fundamental and 3rd harmonic microwave of the LINAC frequency, which will be very helpful to get high electron capture efficiency and short bunch length. Concerning velocity bunching effect in the LINAC, electron bunch with good symmetry of current profile and bunch length less than 10 ps can be obtained at the exit of the injector. In this paper, design and beam dynamics simulation for the high-performance injector are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS052  
About • paper received ※ 26 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS053 Design of a 217 MHz VHF Gun at Tsinghua University 2050
SUSPFO084   use link to see paper's listing under its alternate paper code  
 
  • L.M. Zheng, H. Chen, Y.C. Du, W.-H. Huang, R.K. Li, Z.Z. Li, C.-X. Tang
    TUB, Beijing, People’s Republic of China
  • B. Gao
    IHEP, Beijing, People’s Republic of China
 
  A 217 MHz VHF gun operating in CW mode is designing at Tsinghua University. The cathode gradient is designed to be 30 MV/m to accelerate the electron bunches up to 878 keV. The cavity profile is optimized in CST to minimize the input power, peak surface electric field, and peak wall power density. The multipacting analysis and the thermal analysis are also presented in this paper. Further gun shape optimization and mechanical design are ongoing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS053  
About • paper received ※ 15 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS061 The Pre-Injector and Photocathode Gun Design for the MAX IV SXL 2064
 
  • J. Andersson, F. Curbis, L. Isaksson, M. Kotur, D. Kumbaro, F. Lindau, E. Mansten, S. Thorin, S. Werin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The design of the pre-injector, including the new gun, for the SXL project is being finalised for the desired modes of operation, 100 pC and 10 pC with short bunches. The photocathode gun is currently being manufactured and experiments in the MAX IV guntest facility are under preparation to verify the design. In this paper we present the design of the gun and the pre-injector and show some results from simulations using MOGA indicating an emittance below 0.3 mm mrad.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS061  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS065 RF Conditioning of the CLARA 400 Hz Photoinjector 2067
TUPTS063   use link to see paper's listing under its alternate paper code  
 
  • L.S. Cowie, D.J. Scott
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Automated conditioning of the 400 Hz photoinjector for CLARA was begun and the conditioning program refined. The conditioning was performed at 100 Hz. Masks were used to detect breakdowns in the reflected power and phase, and the breakdown rate was limited to 5x106 breakdowns per pulse. The cavity gradient and breakdown rate evolution over the conditioning time is presented. Post-pulse multipactor and other evidence of electron effects were detected. Possible mechanisms for this are discussed. The conditioning was interrupted by breakdown in the waveguide after reaching 2.5 MW, and will be resumed after the planned 6 month shutdown of CLARA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS065  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS066 Re-optimisation of the ALICE Gun Upgrade Design for the 500-pC Bunch Charge Requirements of PERLE 2071
SUSPFO116   use link to see paper's listing under its alternate paper code  
 
  • B. Hounsell, M. Klein, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • B. Hounsell, B.L. Militsyn, T.C.Q. Noakes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • B. Hounsell, W. Kaabi
    LAL, Orsay, France
  • B.L. Militsyn, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The injector for PERLE, a planned ERL test facility, must be capable of delivering 500 pC bunches at a repetition rate of 40.1 MHz to provide a beam with 20 mA average current with a projected rms emittance of less than 6 mm mrad. This must be achieved at two different operational voltages 350 kV and 220 kV for unpolarised and polarised operation respectively. The PERLE injector will be based on an upgrade of a DC photocathode electron gun operated previously at ALICE ERL at Daresbury. The upgrade will add a load lock system for photocathode interchange. This paper presents the results of a re-optimisation of the electrode system as ALICE operated with a bunch charge of around 80 pC while PERLE needs a bunch charge of 500 pC. This re-optimisation was done using the many-objective genetic algorithm NSGAIII to minimise both the slice emittance and transverse beam size for both required operational voltages.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS066  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS076 RF Design of APEX2 Cavities 2094
 
  • T.H. Luo, H.Q. Feng, D. Filippetto, M.J. Johnson, A.R. Lambert, D. Li, C.E. Mitchell, F. Sannibale, J.W. Staples, S.P. Virostek, R.P. Wells
    LBNL, Berkeley, California, USA
  • H.Q. Feng
    TUB, Beijing, People’s Republic of China
 
  Funding: Director of Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
APEX2 is a proposed high repetition rate, high brightness electron source based on CW normal conducting RF cavities, aiming to further extend the brightness performance for FEL and UED/UEM beyond APEX. APEX2 consists of two cavities, one gun cavity for generating photo-electrons and one following cavity for beam energy boosting. In this paper, we present the RF design of the APEX2 cavities. The design has considered both beam dynamics requirements and engineering feasibility. A novel geometry optimization method with Genetic Algorithm has been implemented in the design procedure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS076  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS080 Beam Dynamics Studies of an APEX2-Based Photoinjector 2109
 
  • C.E. Mitchell, H.Q. Feng, D. Filippetto, M.J. Johnson, A.R. Lambert, D. Li, T.H. Luo, F. Sannibale, J.W. Staples, S.P. Virostek, R.P. Wells
    LBNL, Berkeley, California, USA
 
  APEX2 is a proposed normal conducting radio-frequency (RF) electron gun operating in the very high frequency (VHF) range in continuous wave (CW) mode, designed to drive applications that require both high beam brightness and high repetition rate, such as free electron lasers (such as LCLS-II-HE), ultra-fast electron diffraction, and microscopy. The gun consists of a two-cell RF cavity operating at 162.5 MHz with a cathode field of 34 MV/m, together with an embedded focusing solenoid. We study the beam dynamics in an APEX-II-based photoinjector (up to ~20 MeV), targeting a transverse 95% beam emittance of 0.1 um at 12.5 A peak current for the case of 100 pC charge for FEL applications. The high cathode field leads to enhanced beam brightness, while the increased gun exit energy of ~1.5 MeV reduces the effects of space charge, and possibly eliminates the need for an RF buncher. The embedded solenoid is designed to control the transverse beam size while minimizing emittance growth due to geometric aberrations. As a result, the transverse beam performance targets are achieved, and ongoing work will further optimize longitudinal beam quality for downstream FEL transport.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS080  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS085 Design Study of 3.6-cell C-band Photocathode Electron Gun 2121
 
  • W. Fang, Z.T. Zhao
    SSRF, Shanghai, People’s Republic of China
  • L. Wang
    University of Chinese Academy of Sciences, Beijing, People’s Republic of China
  • L. Wang
    SINAP, Shanghai, People’s Republic of China
 
  A C-band photocathode injector composed of a 3.6-cell C-band photocathode RF gun and two 1.8-meter C-band accelerating structures is proposed. The injector is a low emittance electron source for Free Electron Lasers (FEL) and other compact light sources. The RF structure of the cavities is designed with 2D SUPERFISH simulation. The Beam dynamic study in ASTRA helps rectify the 2D RF simulation. To feed the cavities, a design of extra coaxial coupler with RF gun structure is presented. With compact focusing solenoids, for 0.25nC bunch charge, the final energy can reach 6.9 MeV energy and the 95% emittance can be as low as 0.23 mm mrad (95%). All the details of RF design and beam dynamics studies are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS085  
About • paper received ※ 15 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS101 Bi-Alkali Antimonide Photocathodes for LEReC DC Gun 2154
 
  • E. Wang, A.V. Fedotov, M. Gaowei, D. Kayran, D. Lehn, C.J. Liaw, T. Rao, J.E. Tuozzolo, J. Walsh
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Low Energy RHIC electron cooling (LEReC) is a bunched electron cooler at RHIC. The Bi-alkali photocathodes are chosen as electron source due to its long lifetime and high QE at visible wavelength. Because the DC gun needs to produce 24/7 beams over several months, cathode production system and multiple cathodes transferring systems are designed, commissioned and in operation. In this report, we will describe our photocathodes production and discuss the cathode’s performance from cathode growth system to the DC gun.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS101  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS102 New Activation Techniques for Higher Charge Lifetime from GaAs Photocathodes 2157
 
  • O.H. Rahman, M. Gaowei, W. Liu, E. Wang
    BNL, Upton, Long Island, New York, USA
  • J.P. Biswas
    Stony Brook University, Stony Brook, USA
 
  GaAs is the choice of photocathode material for polarized electron sources. The well established method of activating GaAs for beam extraction is to use Cs and Oxygen to create a ’Negative Electron Affinity’(NEA) layer. However, this layer is highly sensitive to vacuum and gets damaged due to ion back bombardment in DC guns. In this work, we explore activation methods that used Tellurium in conjunction with the usual Cs and Oxygen. We report our method to activate GaAs and show charge lifetime results for our activation method. Our results show that the use of Te could potentially help with longer charge lifetimes from GaAs cathodes in DC guns.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS102  
About • paper received ※ 14 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS105 High Current High Charge Magnetized and Bunched Electron Beam from a DC Photogun for JLEIC Cooler 2167
 
  • S. Zhang, P.A. Adderley, J.F. Benesch, D.B. Bullard, J.M. Grames, J. Guo, F.E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, G.A. Krafft, M.A. Mamun, M. Poelker, R. Suleiman, M.G. Tiefenback, Y.W. Wang
    JLab, Newport News, Virginia, USA
  • J.R. Delayen, G.A. Krafft, Y.W. Wang, S.A.K. Wijethunga
    ODU, Norfolk, Virginia, USA
 
  Funding: This project was supported by the U.S. DOE Basic Energy Sciences under contract No. DE-AC05-060R23177. Additional support comes from Laboratory Directed Research and Development program.
A high current, high charge magnetized electron beamline that has been under development for fast and efficient cooling of ion beams for the proposed Jefferson Lab Electron Ion Collider (JLEIC). In this paper, we present the latest progress over the past year that include the generation of picosecond magnetized beam bunches at average currents up to 28 mA with exceptionally long photocathode lifetime, and the demonstrations of magnetized beam with high bunch charge up to 700 pC at 10s of kHz repetition rates. Detailed studies on a stable drive laser system, long lifetime photocathode, beam magnetization effect, beam diagnostics, and a comparison between experiment and simulations will also be reported. These accomplishes marked an important step towards the essential feasibility for the JLEIC cooler design using magnetized beams.
(To be inserted)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS105  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS106 First Commissioning of LCLS-II CW Injector Source 2171
 
  • F. Zhou, C. Adolphsen, A.L. Benwell, G.W. Brown, W.S. Colocho, Y. Ding, M.P. Dunning, K. Grouev, B.T. Jacobson, X. Liu, T.J. Maxwell, J.F. Schmerge, T.J. Smith, T. Vecchione, F.Y. Wang, C.M. Zimmer
    SLAC, Menlo Park, California, USA
  • G. Huang, F. Sannibale
    LBNL, Berkeley, California, USA
 
  Funding: The work is supported by DOE under grant No. DE-AC02-76SF00515
The LCLS-II injector source includes a 186MHz CW rf-gun, a 1.3 GHz CW rf-buncher, a loadlock system for photocathode change, two main solenoids, and a few essential diagnostics. The electron beam is designed to operate at a high repetition rate, up to 1-MHz. Since summer of 2018 we started LCLS-II injector source commissioning immediately after the major installation was completed. Initial commissioning showed the rf-gun was severely contaminated with hydrocarbons and very limited power <600W could be fed into the gun cavity. After a few significant processes, we eventually removed the hydrocarbons and successfully delivered desired rf power of 80 kW to the gun. This paper reports first com-missioning results including gun bakeout and vacuum processing, CW RF-gun and buncher operation with nom-inal power, and measurements of rf stability and dark current.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS106  
About • paper received ※ 10 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS111 Study on Improving Durability of Cs-Te Photocathode for an RF-gun 2182
 
  • T. Tamba, J. Miyamatsu, K. Sakaue, M. Washio
    Waseda University, Tokyo, Japan
 
  At Waseda University, we have been studying for high quality electron beam generation using 1.6 cell Cs-Te photocathode rf-gun. We use photocathode as the electron source, which can generate high- quality electron beam such as low emittance, and short bunch. The performance of photocathode is evaluated mainly in terms of quantum efficiency (Q.E.) and lifetime. Cs-Te photocathode used in the rf-gun is known for high Q.E. about 10% with UV light and relatively longer lifetime among semiconductor photocathodes. Since it is a hard environment for photocathode inside the gun, it is necessary to replace the photocathode every several months. In other words, in order to achieve long-term operation of rf-gun, it is necessary to find highly durable photocathode recipe. It has been reported that the Cs-Te photocathode by co-evaporation can produce a photocathode having a longer lifetime as compared with the sequential evaporation. Moreover, we have done studies to improve lifetime and durability of Cs-Te photocathode by coating the cathode surface with CsBr thin film. In this conference, we report the evaluation results of Cs-Te photocathode by co-evaporation, CsBr coating and future prospects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS111  
About • paper received ※ 12 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS113 Microwave Thermionic Electron Gun for Synchrotron Light Sources 2189
 
  • S.V. Kutsaev, R.B. Agustsson, R.D. Berry, D. Chao, O. Chimalpopoca, A.Yu. Smirnov, K.V. Taletski, A. Verma
    RadiaBeam, Santa Monica, California, USA
  • M. Borland, A. Nassiri, Y. Sun, G.J. Waldschmidt, A. Zholents
    ANL, Argonne, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, under contracts DE-SC0015191 and DE- AC02-06CH11357.
Thermionic RF guns are the source of electrons used in many practical applications, such as drivers for synchrotron light sources, preferred for their compactness and efficiency. RadiaBeam Technologies has developed a new thermionic RF gun for the Advanced Photon Source at Argonne National Laboratory, which would offer substantial improvements in reliable operations with a robust interface between the thermionic cathode and the cavity, as well as better RF performance, compared to existing models. This improvement became possible by incorporating new pi-mode electromagnetic design, robust cavity back plate design, and a cooling system that will allow stable operation for up to 1 A of beam current and 100 Hz rep rate at 1.5 μs RF pulse length, and 70 MV/m peak on-axis field in the cavity. In this paper, we discuss the electromagnetic and engineering design of the cavity and provide the test results of the new gun.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS113  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS117 Photocathode Activities at INFN LASA 2203
 
  • D. Sertore, G. Guerini Rocco, P. Michelato, L. Monaco
    INFN/LASA, Segrate (MI), Italy
  • S.K. Mohanty
    DESY Zeuthen, Zeuthen, Germany
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  We present the activity on alkali antimonide photocathodes at INFN LASA. The long term goal is to transfer to these photocathodes the know-how acquired in the successful development of cesium telluride photocathodes, nowadays used in many leading FEL facilities and accelerator complex. In this paper we present and discuss the results so far obtained on alkali antimonide films grown in our R&D system and the status of the new preparation system specifically designed for these sensitive materials.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS117  
About • paper received ※ 16 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXXPLM3
Photocathodes Research Activities for High Brigtheness Beams, Spin Polarized Sources and Large Area Photon Detectors at Cornell University  
 
  • L. Cultrera, J. Bae, I.V. Bazarov, C.J.R. Duncan, A. Galdi, F. Ikponmwen, W.H. Li, J.M. Maxson, C.M. Pierce
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF award no. PHY-1549132, DOE awards no. DE-SC0011643 and DE-SC0019122
We will a give broad description of recent results from Cornell University on improving the state of the art in the production of high brightness photoemitted electron beams for future light sources and ultrafast electron scattering. We will also discuss recent results on improving the lifetime of photocathode for spin polarized electron beam and on the production of large area photocathodes for single photon detection applications
 
slides icon Slides WEXXPLM3 [7.384 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)