A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    

site

Paper Title Other Keywords Page
WEPKF048 Characteristics of Ground Motion at KEK and SPring-8 alignment, kicker, bunching, radiation 1711
 
  • Y. Nakayama, T. Ito
    JPOWER, Kanagawa-ken
  • S. Matsui, C. Zhang
    JASRI/SPring-8, Hyogo
  • R. Sugahara, S. Takeda, H. Yamaoka, M. Yoshioka
    KEK, Ibaraki
  • S. Yamashita
    University of Tokyo, Tokyo
  Authors Y. Nakayama, T. Ito, (JPOWER); R. Sugahara, S. Takeda, H.Yamaoka, M.Yoshioka (KEK); S.Matsui, C.Zhang (SPring-8); S. Yamashita (ICEPP): Abstract Stability of ground is preferable for accelerator beam operation. We have measured ground motion of ground at the KEKB and SPring-8 site, where the ground has quite different characteristics each other. In this paper, some of analysis results are shown, and the characteristics of the ground motion at the KEKB site and those at the Spring-8 site are compared.  
 
WEPKF049 Stretched Wire Flip Coil System for Magnetic Field Measurements alignment, kicker, bunching, radiation 1714
 
  • D.E. Kim, C.W. Chung, H.S. Han, Y.G. Jung, H.G. Lee, W.W. Lee, K.-H. Park, H.S. Suh
    PAL, Pohang
  A flip-coil system using a stretched wire measuring the magnetic field properties of accelerator magnets is described. This system is similar to the conventional rotating coil system except that the stretched wires are used instead of wires wound on the machined surface. This system has advantage of simple fabrication and flexible operation so that different length and bore magnets can be easily measured using the same system. The system also has two loop coils to buck the dominant fundamental field so as to increase the measurement accuracy. This kind of system has issues related to the reproducibility, accuracy of the measured results. The system is evaluated to verify its performances and its results were discussed. The analyzing methods and various efforts to keep the system in high accuracy are presented. Measurement results with this loop coil system were compared with that of the other system.  
 
WEPKF050 Measurement of Fast High Voltage Pulse and High Noisy DC Siganla for Modulator at the PLS Linac alignment, kicker, bunching, radiation 1717
 
  • S.-C. Kim, Y.J. Han, S.H. Kim, S.-H. Nam, S.S. Park
    PAL, Pohang
  The 2.5-GeV electron linac at Pohang accelerator laboratory (PAL) has been operated continuously as a full energy injector for the Pohang Light Source (PLS) since Dec. 1994. There have been continuous efforts to improve the klystron-modulator system more stable and reliable. At pulse operated modulator system, important pulse and DC signals are beam voltage, beam current, EOLC current HVDC voltage and HVDC current. Pulse signals are fast high voltage pulse 30 Hz, 5ms. These signals are adequate level down from modulator but including high level switching noisy. To amplitude measure of these signals for every trigger signal, we developed special module sampling hold, A/D, calculating and D/A. The output signals of these modules are 0 ~ 10 V DC signal and not include any noise signal. These output signals are connected interlock interface module of the modulator controller. Therefore computer system (PC) of the modulator controller is free to noise of these signals and can precise monitor pulse & noise DC signal. In these paper, we are described itself characteristics pulse and high noisy DC signals of the modulator, signal conditioning technique after noise elimination and operation status of the modulator controller.  
 
WEPKF051 Operational Analysis of PLS 2-GeV Electron Linac Klystron-modulator System klystron, alignment, kicker, bunching 1720
 
  • S.S. Park, Y.J. Han, S.H. Kim, S.-C. Kim, S.-H. Nam
    PAL, Pohang
  The klystron-modulator(K&M) system of the Pohang Light Source(PLS) had been supplying high power microwaves for the acceleration of 2 GeV electron beams. There are 11 sets of K&M systems to accelerate electron beams to 2 GeV nominal beam energy without operating one klystron-modulator. One module of the K&M system consists of an 80 MW S-band (2856 MHZ) klystron tube and the matching 200 MW modulator. The total accumulated high-voltage run-time of the oldest unit among the 12 K&M systems has reached nearly 68,000 hours as of Dec. 2003 and the summation of all the units' high voltage run-time is approximately 820,000 hours. The overall system availability is well over 95%. There have been continuous efforts to improve the klystron-modulator system more stable and reliable. To improve self-diagnostic, operation, monitoring, and remote communication, we developed a new modulator controller based on an industrial PC platform in 2002. In this paper, we are able to review overall system performance of the high-power K&M system and the operational characteristics of the klystrons and thyratrons, and overall system's availability analysis from Jan. to Dec. 2003.  
 
WEPKF053 Status and Development for the JAERI ERL-FEL for High-Power and Long-Pulse Operation klystron, alignment, kicker, bunching 1723
 
  • M. Sawamura, R. Hajima, N. Kikuzawa, E.J. Minehara, R. Nagai, N. Nishimori
    JAERI/FEL, Ibaraki-ken
  After the success of energy recovery linac (ERL) for the superconducting free-electron laser (FEL) in the Japan Atomic Energy Research Institute (JAERI), the JAERI ERL-FEL has been upgrading for high-power and long-pulse operation. The new grid pulser for the thermoionic cathode gun is under development and test to increase the beam current by increasing the repetition rate of 10MHz to 20MHz. The new RF sources of CW mode for higher power for non-energy-recovery parts have been installed and tested for long-pulse operation. The properties of the superconducting linac required for the long-pulse operation were also measured such as pressure in the cryomodule, vibration of frequency and piezo tuner response. The RF control systems have been also upgraded to reduce the fluctuation to less than 0.1% for amplitude and 0.1 deg for phase.  
 
WEPKF054 Auto-filling Cryogenic System for Superconducting Wiggler klystron, alignment, kicker, bunching 1726
 
  • F.-Y. Lin, C.-H. Chang, H.-H. Chen, T.-C. Fan, M.-H. Huang, C.-S. Hwang
    NSRRC, Hsinchu
  A 3.2 Tesla superconducting wiggler with period length of 6.0 cm (SW6) was installed in January of 2004 at the National Synchrotron Radiation Research Center (NSRRC). A cryogenic plant for superconducting rf cavity will also provide liquid helium and liquid nitrogen for SW6 by using an independent automatic filling system. To facilitate a stable and precise auto-filling process, a PID controller, the kernel of the auto-filling system, will control the valves of liquid helium and liquid nitrogen, respectively. The authors shall present the control algorithm of different operation modes, namely the pre-cooling mode and normal auto-filling mode. The boil off rate of liquid helium and liquid nitrogen will be discussed.  
 
WEPKF055 Design and Implementation of a Switching Mode Bipolar Power Stage of the Correction Power Supply klystron, alignment, kicker, bunching 1729
 
  • C.-Y. Liu, C.H. Kuo, K.-B. Liu
    NSRRC, Hsinchu
  In order to enhance efficiency of the correction power supply, the switching mode bipolar power stage was to implement and to substitute for the original power stage of the correction power supply. To ensure higher efficiency, the programming dc bus voltage of the power stage of the correction power supply must be working in accordance with the output current state and load. A new power conversion stage was constructed and employs power MOSFET operating at higher switching frequency then old 60 Hz energy conversion mode system. This will not only improve the efficiency but also decrease the weight of the correction power supply. The new switching mode power stage supply a bipolar power dc bus power and automatic turning working voltage by the feedback balance circuit. Results and working performance will be presented in this paper.  
 
WEPKF056 Reducing Output Current Ripple of Power Supply with Component Replacement klystron, alignment, kicker, bunching 1732
 
  • K.-B. Liu, C.-S. Fann
    NSRRC, Hsinchu
  Correction magnets of synchrotron storage ring are served with linear power supplies (correction power supply) with 100 ppm output current ripple in National Synchrotron Radiation Research Center. Reducing output current ripple of correction power supply might reduce perturbation of beam position of storage ring. Replace correction power supplies with lower output current ripple ones is straightforward but costs lots of money. Without adding any other circuit and electronic component, some components of correction power supply are replaced by ones with more precious and lower output fluctuation; so that the same circuitry structure of correction power supply is kept without increasing its complexity and could reach 25 ppm output current ripple.  
 
WEPKF057 Design and Study of a Superferric Model Dipole and Quadrupole Magnets for the GSI Fast-pulsed Synchrotron SIS100. klystron, alignment, kicker, bunching 1735
 
  • A.D. Kovalenko, N.N. Agapov, V. Bartenev, A. Donyagin, I. Eliseeva, H.G. Khodzhibagiyan, G.L. Kuznetsov, A. Smirnov, M.A. Voevodin
    JINR, Dubna, Moscow Region
  • E. Fischer, G. Moritz
    GSI, Darmstadt
  New experimental results from the investigation of a model superferric Nuclotron-type dipole and quadrupole magnets are presented. The magnets operate at pulse repetition rate f = 1Hz, providing peak magnetic field B = 2 T and the field gradient G = 34 T/m in the dipoles and quadrupoles respectively. The superconducting coil is made from a hollow multi-filamentary NbTi cable cooled with two phase helium flow. Different possibilities were investigated to reduce AC power losses in the case of a cold iron yoke (T=4.5K). The achieved results are discussed. The value of 9W/m has been obtained for dipole magnet with the yoke at T=50K. The first 50 K yoke quadrupole was designed and tested. Other problems, connected with the magnetic field quality, mechanical and cryogenic stability of the magnets under SIS100 operating conditions are also discussed.  
 
WEPKF060 Bending Magnets for the SAGA Storage Ring: Manufacturing and Magnetic Measurements klystron, alignment, kicker, bunching 1738
 
  • S.V. Sinyatkin, I.N. Churkin, O.B. Kiselev, V. Korchuganov, A.B. Ogurtsov, A.V. Philipchenko, L.M. Schegolev, K.K. Schreiner, A.G. Steshov, V. Ushakov
    BINP SB RAS, Novosibirsk
  • M. Kuroda, Y. Tsuchida
    Saga Synchrotron Light Source, Industry Promotion Division, Saga City
  The paper describes the design, the manufacture and the magnetic measurement of the dipole bending magnets (BM) for SR Source storage ring (prefecture SAGA, Japan) carried out in BINP, Novosibirsk, Russia. The requirement was to create the laminated C-shape BMs with the 3.2 m radius and parallel edges. The magnetic field homogeneity must be not worth than ±2? 10-4 inside the working area: H = 30+40mm and V = ±20mm at 0.26T (250 MeV), and H = ± 28mm and V = ±20mm at 1.46 T (1.4GeV). The BMs were designed on the basis of the 2-D 3-D modeling taking into account the laminated core. The BMs yokes were produced with the help of the technology of the high temperature gluing. The computer simulations are in a good agreement with the magnetic measurements. The main parameters of the magnetic fields satisfy to the requirements and are presented. The features of the design, manufacturing and precise magnetic measurements of SAGA BMs are discussed.  
 
WEPKF061 Study of Electrical Steel Magnetic Properties for Fast Cycling Magnets of SIS100 and SIS300 Rings klystron, alignment, kicker, bunching 1741
 
  • I. Bogdanov, S. Kozub, A. Shcherbakov, L. Tkachenko
    IHEP Protvino, Protvino, Moscow Region
  • E. Fischer, F. Klos, G. Moritz, C. Muehle
    GSI, Darmstadt
  The operation conditions of yoke steels in superconducting magnets of the SIS100 and SIS300 are at 4.2 K and unipolar cycles with high magnetic induction. The results of measurements of different classes of electrical steels, both isotropic and anisotropic, in the operating conditions of superconducting dipoles are presented. The measurements are carried out on ring samples in quasistatic mode. Dependence of B(H) as well as values of Hc and hysteresis losses in bipolar and unipolar cycles are determined from hysteresis loops at different temperatures. The anisotropy of steels is measured at room temperature on the strip samples, cut along the rolling direction and across one. The comparison of results on ring and strip samples is carried out. The results of calculations of hysteresis and eddy current losses in iron yoke of fast-cycling dipole for the SIS300 are presented. The recommendations on choice of grade steels for fast cycle superconducting magnets are given.  
 
WEPKF062 Study of the Quench Process in Fast-cycling Dipole for the SIS300 Ring klystron, alignment, kicker, bunching 1744
 
  • I. Bogdanov, S. Kozub, A. Shcherbakov, L. Tkachenko, S. Zintchenko, V. Zubko
    IHEP Protvino, Protvino, Moscow Region
  • J. Kaugerts, G. Moritz
    GSI, Darmstadt
  The results of numerical quench process simulation in the coil of superconducting dipole with magnetic field of 6 T and 100-mm aperture for high-energy ion and proton synchrotron facility SIS300 are presented. The peculiarities of quench process developed in dipole are discussed for several variants of quench conditions. The coil quench behavior determines the features, scopes, and limitations in possible quench protection scheme. Main design characteristics of the preferable protection system are considered.  
 
WEPKF063 Comparison of Three Designs of Wide Aperture Dipole for SIS300 Ring klystron, alignment, kicker, bunching 1747
 
  • L. Tkachenko, I. Bogdanov, S. Kozub, A. Shcherbakov, I. Slabodchikov, V. Sytnik, V. Zubko
    IHEP Protvino, Protvino, Moscow Region
  • J. Kaugerts, G. Moritz
    GSI, Darmstadt
  The GSI Fast-Pulsed Synchrotron Project is found now under development. The last stage of this machine is the SIS300 ring, which will use superconducting dipoles with 100-mm aperture, 6-T magnetic field amplitude and 1-T/s field ramp rate. This dipole has to posses minimal heat losses both in the coil and in the iron yoke. This article considers three designs of such dipole. The main distinction of these designs is the different thickness of stainless steel collars, which are supported the coil. The collars in the first design hold all forces arisen in the magnet. The second design needs collars only for assembly of the coil and cooling down of the magnet. An iron yoke in this design will withstand ponderomotive forces. The third design has no collars and the iron yoke will hold all forces, including preload, forces originated during cooling down and ponderomotive forces. The different mechanical, magnetic and thermal characteristics are presented and comparative analysis of these designs is carried out.  
 
WEPKF064 Methods for Reducing Cable Losses in Fast-Cycling Dipoles for the SIS300 Ring klystron, alignment, kicker, bunching 1750
 
  • L. Tkachenko, I. Bogdanov, S. Kozub, A. Shcherbakov, I. Slabodchikov, V. Zubko
    IHEP Protvino, Protvino, Moscow Region
  • G. Moritz
    GSI, Darmstadt
  • V. Sytnikov
    RCSRDI, Moscow
  A new synchrotron facility is being designed for the acceleration of high intensity and high-energy ion and proton beams at GSI, Darmstadt. The main magnetic elements of the second stage (SIS300) are superconducting dipoles with 100 mm aperture, 6-T magnetic field amplitude, and 1 T/s field ramp rate. The main requirements for these magnets, in addition to high field quality, are minimal heat losses, both in the coil and in the iron yoke, at an acceptable temperature margin. An increase of the temperature margin can be achieved by increasing the volume of superconductor in the cable. However, increasing the number of strands in the cable results in a growth of the cable width. Since coupling losses in the cable are proportional to the fourth power of cable width, these losses rise dramatically. This presentation considers and analyses different ways of reducing these cable heat losses. The calculated results of heat losses for different geometries, based on various cable designs, as well as the parameters of optimal cable designs, based on computer simulations, are presented.  
 
WEPKF065 Study of Thermal Stability and Quench Process of HTS Dipole klystron, alignment, kicker, bunching 1753
 
  • V. Zubko, I. Bogdanov, S. Kozub, A. Shcherbakov, L. Tkachenko
    IHEP Protvino, Protvino, Moscow Region
  The dipole with a coil made from HTS composite on a Bi2223 basis and placed in the ferromagnetic yoke has been developed and produced in IHEP. A designed magnetic field of the dipole in 20-mm aperture is 1 T at temperature of liquid nitrogen. The numerical analysis of factors, having influence on thermal stability of the magnet, as well as the computer simulations of dipole heating during quench was carried out. An anisotropy of voltage-current characteristics of HTS tapes in a magnetic field is taken into account in calculations of quench process. The measured results of voltage-current characteristics during powering and quench of the coil are in a good agreement with the numerical calculations  
 
WEPKF066 Stability of Fast-cycling Dipole for SIS300 Ring klystron, alignment, kicker, bunching 1756
 
  • V. Zubko, I. Bogdanov, S. Kozub, A. Shcherbakov, L. Tkachenko, S. Zintchenko
    IHEP Protvino, Protvino, Moscow Region
  • M. Kauschke, G. Moritz
    GSI, Darmstadt
  Funding AgencyShould not exceed 200 charactersFootnotesFootnotes: Not exceeding 200 chaThe main requirement to the superconducting dipole with 100-mm aperture, 6-T magnetic field amplitude and 1-T/s field ramp rate for the SIS300 accelerator, developed in the GSI, Darmstadt, is a stability of the magnet influenced by various heat releases arising during operation mode. The computer simulation of the heating of superconducting dipoles and cooling helium during the SIS300 operating cycle was carried out. The analysis of stability is based on the numerical solution of the heat balance equation in the coil and in a single?phase helium flow. Temperature margin of the superconducting dipole during the SIS300 operating cycle was calculated. Possible ways to increase the temperature margin are discussed.  
 
WEPKF068 Developments in Magnet Power Converters at the SRS klystron, alignment, bunching, beamloading 1759
 
  • G.D. Charnley, J. Cartledge, P.A.D. Dickenson, S.A. Griffiths, S.H. Hands, R.J. Smith, J.E. Theed, C.J. White
    CCLRC/DL, Daresbury, Warrington, Cheshire
  A project to upgrade the magnet power converters of the SRS has commenced to ensure its efficient operation for its remaining operational lifetime. A recent risk analysis of the facilities equipment identified that the main areas for concern were the Storage Ring magnet power converters, kicker and septum pulse power supplies and the Booster Dipole "White Circuit" and associated power converters. This report detail the development and replacement programs currently active at Daresbury Laboratory, including future work identified to support and improve SRS utilisation.  
 
WEPKF069 52 kV Power Supply for Energy Recovery Linac Prototype RF klystron, alignment, bunching, beamloading 1762
 
  • J.E. Theed, M. Dykes, A. Gallagher, S.A. Griffiths, S.H. Hands, A.J. Moss, J.F. Orrett, C.J. White
    CCLRC/DL, Daresbury, Warrington, Cheshire
  Daresbury Laboratory is constructing a Radio-Frequency (RF) Test Facility to be capable of testing RF cavities for accelerator applications. Electrical power for the RF equipment will be provided from an existing -52 kV 6-pulse rectifier and transformer system capable of delivering 16A DC continuous current. A crowbar circuit will be provided to divert the large amount of stored energy in the smoothing capacitor bank in the event that a spark should occur between the cathode and the body or modulating anode. Traditionally, the crowbar has been provided by using an ignitron, but modern solid state devices have sufficient performance to meet the requirements. This paper discusses the numerous design options that were considered for the circuit parameters.  
 
WEPKF072 Clearing Electrodes for Vacuum Monitoring at the Fermilab Recycler focusing, klystron, alignment, bunching 1771
 
  • D.R. Broemmelsiek, S. Nagaitsev
    Fermilab, Batavia, Illinois
  The Fermilab Recycler is a fixed 3.3-km 8-GeV kinetic energy storage ring located in the Fermilab Main Injector tunnel. Each split-plate beam position monitor in the Recycler is also used to generated an ion clearing field for ions trapped by the antiproton beam. Approximately 100 locations have been instrumented with pico-amp meters to measure the electron current, generated by the beam-ionized residual gas in the vacuum chamber. This electron current is found to be proportional to the beam current and to the residual gas pressure in the Recycler and may be used to monitor the Recycler vacuum.  
 
WEPKF073 2nd Generation LHC IR Quadrupoles Based on Nb3Sn Racetrack Coils focusing, klystron, alignment, bunching 1774
 
  • V. Kashikhin, J. Strait, A.V. Zlobin
    Fermilab, Batavia, Illinois
  After the LHC operates for several years at nominal parameters, it will be necessary to upgrade it for higher luminosity. Replacing the baseline NbTi low-beta quadrupoles with a higher performance magnets based on advanced superconducting materials and magnet technologies is one of the most straightforward ways in this direction. Preliminary studies show that high-performance Nb3Sn strands to be available within the next few years allow increasing the quadrupole aperture up to 110 mm using a 4-layer shell-type coil and providing the same 200 T/m field gradient with 20% margin as the baseline magnets. It will allow reduction of b* by a factor of 3. An alternative approach to the quadrupole design is based on simple flat racetrack coils. This paper discusses the possibilities and limitations of large-aperture racetrack quadrupole designs and compares them to the shell-type magnets.  
 
WEPKF074 Magnetic Field Measurements of the LHC Inner Triplet Quadrupoles Produced at Fermilab focusing, klystron, bunching, quadrupole 1777
 
  • G. Velev, R. Bossert, R. Carcagno, J. DiMarco, S. Feher, H. Glass, V. Kashikhin, J.S. Kerby, M. Lamm, T. Nicol, L. Nobrega, D. Orris, T. Page, T. Peterson, R. Rabehl, P. Schlabach, J. Strait, C. Sylvester, M. Tartaglia, J. Tompkins, A.V. Zlobin
    Fermilab, Batavia, Illinois
  Production of 18 superconducting low-beta quadrupoles (MQXB) for the LHC is well advanced. These 5.5 m long magnets are designed to operate at 1.9 K with a peak field gradient of 215 T/m in the 70 mm apertures. Two MQXB cold masses with a dipole orbit corrector between them form a single cryogenic unit (LQXB) which is the Q2 optical element of the final focus triplets in the LHC interaction regions. A program of magnetic field quality and alignment measurements of the cold masses are performed at room temperature during magnet fabrication and LQXB assembly as well as at superfluid helium temperature. Results of these measurements are summarized in this paper.  
 
WEPKF075 Measurements of Sextupole Decay and Snapback in Tevatron Dipole Magnets focusing, klystron, bunching, quadrupole 1780
 
  • G. Velev, J. Annala, P. Bauer, J. DiMarco, H. Glass, R. Hanft, R. Kephart, M. Lamm, M. Martens, P. Schlabach, C. Sylvester, M. Tartaglia, J. Tompkins
    Fermilab, Batavia, Illinois
  To optimize the performance of the Fermilab Tevatron accelerator in Collider Run II, we have undertaken a systematic study of the drift and subsequent snapback of dipole magnet harmonics. The study has mostly focused on the dynamic behavior of the normal sextupole component, b2, as measured in a sample of spare Tevatron dipoles at the Fermilab Magnet Test Facility. We measured the dependence of the decay amplitude and the snapback time on Tevatron ramp parameters and magnet operational history. A series of beam studies was also performed [*]. This paper summarizes the magnetic measurement results and describes an optimization of the b2 correction scheme which is derived from these measurements.

* P.Bauer et al. These proceedings.

 
 
WEPKF076 Solid-state Marx Bank Modulator for the Next Linear Collider focusing, bunching, quadrupole, beamloading 1783
 
  • M.A. Kempkes, F.O. Arntz, J.A. Casey, M.P.J. Gaudreau
    Diversified Technologies, Inc., Bedford
  The Next Generation Linear Collider (NLC) will require hundreds to thousands of pulse modulators to service more than 3300 klystrons. DTI recently investigated the use of a solid-state Marx switch topology for the NLC, and has transitioned this work into the development of a full-scale, 500 V solid state Marx system. Combined with recent advances in semiconductor technology and packaging, these efforts have moved the performance of the Marx pulser far ahead of early estimates. The Marx pulser eliminates the pulse transformer, which is associated with significant loss of performance and a 15-20% penalty in the efficiency of a conventional modulator. The increase in efficiency attributable to the Marx topology can account for over $100M in power cost savings over ten years of NLC operation, an amount comparable to the acquisition costs of the pulsed power systems. In this paper, DTI will discuss the design and development of the Marx Bank modulator. Its performance scales to 125 ns risetime (10-90%) for either a 500 kV, 265 A pulse (for one klystron), or a 500 kV, 530 A pulse (for two klystrons). The use of a unique, common mode inductive charging system allows transfer of filament power without separate isolation transformers.  
 
WEPKF079 A Kicker Design for the Rapid Transfer of the Electron Beam between Radiator Beamlines in LUX focusing, bunching, quadrupole, beamloading 1786
 
  • G.D. Stover
    LBNL/ALS, Berkeley, California
  I present in this paper preliminary design concepts for LUX - A ?fast kicker design for rapid transfer of the electron beam between radiator beamlines. This paper is a very simple feasibility study to find a rougly optimized subset of engineering parameters that would satisfy the initial design specifications of: Pulse width < 30us, time jitter < 1ns, magnetic length < 0.5meter, gap hight = 15mm, gap width = 25mm, peak field = .6Tesla, bend angle = 1.7 deg. for beam energy of 3.1 Gev, repetition rate = 10KHz. An H magnet core configuration was chosen. Through an iterative mathematical process a realizable design was chosen. Peak current, Peak voltages across the coils, conductor losses due to proximity and skin effects, di/dt rates, eddy and beam current heating in the ceramic vacuum chamber, and basic circuit topology were investigated. Types and losses of core material were only briefly discussed. The final topology consists of two magnets in series running at 10KHz, .3Tesla, 630 amp peak current, 10us pulse width, 364 Watts per coil section, driven by fast solid state switch with an energy recovery inductor. Eddy and beam image current losses were ~ 164 watts.  
 
WEPKF080 Secondary Electron Yield Measurements from Thin Surface Coatings for NLC Electron Cloud Reduction focusing, electron, bunching, quadrupole 1789
 
  • F. Le Pimpec, F. King, R.E. Kirby, M.T.F. Pivi
    SLAC, Menlo Park, California
  In the beam pipe of the positron damping ring of the Next Linear Collider, electrons will be created by beam interaction with the surrounding vacuum chamber wall and give rise to an electron cloud. Several solutions are possible for avoiding the electron cloud, without changing the beam bunch structure or the diameter of the vacuum chamber. Some of the currently available solutions include reducing residual gas ionization by the beam, minimizing photon-induced electron production, and lowering the secondary electron yield (SEY) of the chamber wall. We will report on recent SEY measurements performed at SLAC on TiN coatings and TiZrV non-evaporable getter thin films.  
 
WEPKF081 Prototype Development Progress toward a 500kV Solid State Marx Modulator focusing, electron, bunching, quadrupole 1792
 
  • G. Leyh
    SLAC, Menlo Park, California
  Recent advances in high voltage IGBT capabilities have made possible a range of novel solid-state modulator concepts that were unthinkable a decade ago. At present, there are two prototype solid-state modulator designs under evaluation at SLAC – A conventional pulse-transformer design using an 80kV solid-state switch in place of a thyratron, and an 'induction modulator', which uses a stack of magnetic cores to couple many paralleled primary windings to a common secondary winding. Both of these prototype modulators are currently driving actual klystron loads at SLAC. Another promising solid-state modulator concept still in the early stages of development is the Marx configuration – where an array of stacked modules generates high-voltage output pulses directly from a low DC input supply voltage. This scheme eliminates the large and costly magnetic cores inherent in the other two designs, resulting in a considerably simpler and cheaper mechanical solution. The main disadvantage to this approach is that the individual Marx sections must float at high voltages, complicating the distribution of power and timing signals. Several research groups have produced limited scale Marx prototypes in recent years. The largest prototype built to date [DTI] generates an output pulse of approximately 50kV, with plans to eventually move to higher voltage levels. This paper examines in closer detail the practical advantages and pitfalls of a solid-state Marx configuration, and explores a design approach with emphasis on performance, wall-plug efficiency, cost of manufacture, availability and ease of service. The paper presents electrical diagrams, mechanical CAD layout and preliminary prototype test data.  
 
WEPKF082 Radiation Damage Studies with Hadrons on Materials and Electronics focusing, electron, bunching, quadrupole 1795
 
  • J.E. Spencer, J. Allan, S. Anderson, R. Wolf
    SLAC, Menlo Park, California
  • M. Boussoufi
    UCD/MNRC, McClellan, California
  • D.E. Pellet
    UCD, Davis
  • J.T. Volk
    Fermilab, Batavia, Illinois
  Many materials and electronic devices need to be tested for the radiation environment expected at the proposed linear colliders (LC) where the accelerator and detectors will be subjected to large fluences of hadrons, electrons and gammas during the life of the facility. Examples are NdFeB permanent magnets which are being considered for the damping rings and final focus, electronic and electro-optical devices which will be utilized in the detector readout and accelerator control systems and CCDs required for the vertex detector. The effects of gammas on a broad range of materials was presented at NSREC2002 and our understanding of the current situation concerning rare earth permanent magnets at PAC2003 where a program was proposed using neutrons from the McClellan Nuclear Reactor Center (MNRC) that has a number of areas for irradiating samples with neutron fluxes up to 4.5·1013 n/cm2s. A specialized area allows irradiation with 1 MeV-equivalent neutrons with fluxes of 4.2·1010 n/cm2s while suppressing thermal neutrons and gammas by large factors. We give our latest results and their interpretation using this facility.  
 
WEPKF083 SPEAR3 INTERMEDIATE DC MAGNET POWER SUPPLIES focusing, electron, bunching, quadrupole 1798
 
  • A.C. de Lira, P. Bellomo
    SLAC, Menlo Park, California
  The Stanford Synchrotron Radiation Laboratory (SSRL) has successfully commissioned SPEAR3, its newly upgraded 3-GeV synchrotron light source. First stored beam occurred December 15, 2003 and 100mA operation was reached on January 20, 2004. This paper describes the specification, design, and performance of the SPEAR3 intermediate DC magnet power supplies (IPS) that consist of tightly-regulated (better than 10 ppm) current sources ranging from 60 A to 500 A and output powers ranging from a few kW to 22.5kW. A total of 69 IPS are in successful operation. The SPEAR 3 upgrade performance and reliability requirements mandated new power supplies for both the SPEAR3 storage ring, and for the booster-to-SPEAR3 transport line. IPS are widely used at SPEAR3 to power single quadrupoles, dipoles, families of quadrupoles and sextupoles, and also on the Titanium sublimation pumps. IPS' topology allows them to be series operated for those magnet strings requiring higher voltages. A compact 19" standard rack-mounted design is common to all the units. These are off-line, switch-mode, operating at 16 kHz to reduce space and provide for fast output response and high efficiency.  
 
WEPKF084 SPEAR3 LARGE DC MAGNET POWER SUPPLIES focusing, electron, bunching, quadrupole 1801
 
  • A.C. de Lira, P. Bellomo
    SLAC, Menlo Park, California
  The Stanford Synchrotron Radiation Laboratory (SSRL) has successfully commissioned SPEAR3, its newly upgraded 3-GeV synchrotron light source. First stored beam occurred December 15, 2003 and 100mA operation was reached on January 20, 2004. This paper describes the specification, design, and performance of the SPEAR3 DC magnet large power supplies (LGPS) that consist of tightly-regulated (better than 10 ppm) current sources ranging from 100 A to 225 A and output powers ranging from 70kW to 135kW. A total of 6 LGPS are in successful operation and are used to power strings of quadrupoles, and sextupoles. The LGPS are isolated by a delta/delta-wye 60Hz step-down transformer that provide power to 2 series connected chopper stages operating phase-shifted at a 16 kHz switching frequency to provide for fast output response and high efficiency. Also described are outside procurement aspects, installation, in-house testing, and operation of the power supplies.  
 
WEPKF085 Secondary Electron Emission Measurements for TiN Coating on Stainless Steel of SNS Accumulator Ring Vacuum Chamber focusing, bunching, quadrupole, electron 1804
 
  • P. He, H.-C. Hseuh, R. Todd
    BNL, Upton, Long Island, New York
  • B. Henrist, N. Hilleret
    CERN, Geneva
  • S. Kato, M. Nishiwaki
    KEK, Ibaraki
  • R.E. Kirby, F. Le Pimpec, M.T.F. Pivi
    SLAC, Menlo Park, California
  BNL is responsible for the design and construction of the US Spallation Neutron Source (SNS) accumulator ring. Titanium Nitride(TiN) coating on the stainless steel vacuum chamber of the SNS accumulator ring is needed to reduce undesirable resonant multiplication of electrons. The Secondary Electron Yield(SEY) of TiN coated chamber material has been measured after coated samples were exposed to air and after electron and ion conditioning. We are reporting about the TiN coating system setup at BNL and SEY measurements results performed at CERN, SLAC and KEK. We also present updated electron-cloud simulation results for the SNS accumulator assuming different SEY values.  
 
WEPKF086 A Model for Determining Dipole, Quadrupole and Combined Function Magnet Costs focusing, bunching, quadrupole, electron 1807
 
  • R. Palmer, J.S. Berg
    BNL, Upton, Long Island, New York
  One of the most important considerations in designing large accelerators is cost. Magnet costs are a significant component of that. This paper describes a model for estimating magnet costs. The reasoning behind the cost model is explained, and the parameters of the model are chosen so as to correctly give the costs for existing magnets.  
 
WEPKF087 SNS Extraction Fast Kicker Pulsed Power System focusing, bunching, quadrupole, electron 1810
 
  • W. Zhang, H. Hahn, J.-L. Mi, C. Pai, J. Sandberg, Y. Tan, N. Tsoupas, J. Tuozzolo, D.S. Warburton, J. Wei
    BNL, Upton, Long Island, New York
  • R. Cutler, K. Rust
    ORNL/SNS, Oak Ridge, Tennessee
  The Spallation Neutron Source (SNS) is a next generation high intensity beam facility. Its Accumulator Ring Extraction Fast Kicker System is a very high peak power, high average power, high precision pulse-waveform, ultra-low beam impedance, and high repetition rated pulsed power system. It has been successfully design and developed at Brookhaven National Laboratory. This system will consist of fourteen identical high voltage modulators and fourteen extraction magnet sections located inside of the SNS accumulator ring. The overall system output will reach multiple GW peak power with 60 Pulse-per-second repetition rates. The techniques of reducing impedance, improving rise time, and minimizing ripples will be discussed. The lifetime considerations, issues of the system design, development and construction are presented in this paper.  
 
WEPLT001 Nonlinear Beam Dynamics Study with MATLAB focusing, bunching, quadrupole, beamloading 1813
 
  • Y.L. Martirosyan, M. Ivanyan, D. Kalantaryan
    CANDLE, Yerevan
  In this paper, we present description of MATLAB based computer code, which allows tracking of single particles by numerical integration of Hamilton's equations. For storage rings the damping time is of the order of few ms (102 '104 turns) and therefore the short-term stability time is determinant. For this reason symplecticity condition of the tracking method for the electron machines is not as important as in hadron machines. Applying recently introduced modern tools for post process analyzing, such as interpolated FFT, early indicators for long term stability, the determination of the onset of chaotic behavior using the maximal Lyapunov exponent, and etc, one can carry out simulations to evaluate the dynamic aperture, amplitude dependent tunes, phase space distortions, nonlinear resonances etc. The proposed code is applied for beam nonlinear dynamics study in CANDLE storage ring.  
 
WEPLT002 Shielding Design Study for CANDLE Facility focusing, bunching, quadrupole, beamloading 1816
 
  • K.N. Sanosyan, M. Aghasyan, R.H. Mikaelyan
    CANDLE, Yerevan
  • V.M. Vartanian
    Stanford University, Stanford, Califormia
  The radiation shielding design study for the third generation synchrotron light source CANDLE is carried out. The electron beam loss estimates have done for all the stages from linac to storage ring. A well-known macroscopic model describing the dose rate for point losses has been used to calculate the shielding design requirements of the facility.  
 
WEPLT003 The Study of 2D Sextupole Coupling Resonances at VEPP-4M focusing, bunching, quadrupole, beamloading 1819
 
  • V.A. Kvardakov, E. Levichev, A.I. Naumenkov, P.A. Piminov
    BINP SB RAS, Novosibirsk
  The Study of 2D Sextupole Coupling Resonances at VEPP-4M  
 
WEPLT005 Building Truncated Taylor Maps with Mathematica and Applications to FFAG focusing, bunching, quadrupole, beamloading 1822
 
  • D. Kaltchev
    TRIUMF, Vancouver
  Lie algebra tools coded directly in Mathematica have been used to compute the off-momentum closed orbit, orbit length and horizontal tune of Fixed Field Alternating Gradient (FFAG) lattices proposed for muon acceleration. The sample FFAG cell considered consists of quadrupoles and alternating gradient magnets. A high order Taylor map is needed, valid over a wide momentum range. We describe the algorithm and Mathematica operators needed to create and concatenate individual element maps (presented as Lie exponential operators) and compare our results with those obtained with a high-order differential algebra code – COSY. The speed achieved is inferior to the differential algebra method.  
 
WEPLT006 Expected Performance and Beam-based Optimization of the LHC Collimation System focusing, bunching, quadrupole, beamloading 1825
 
  • R.W. Assmann, E.B. Holzer, J.-B. Jeanneret, V. Kain, S. Redaelli, G. Robert-Demolaize, J. Wenninger
    CERN, Geneva
  The cleaning efficiency requirements in the LHC are 2-3 orders of magnitude beyond the requirements at other super-conducting circular colliders. The achievable ideal cleaning efficiency in the LHC is presented and the deteriorating effects of various physics processes and imperfections are discussed in detail for the improved LHC collimation system. The longitudinal distribution of proton losses downstream of the betatron cleaning system are evaluated with a realistic aperture model of the LHC. The results from simplified tracking studies are compared to simulations with complete physics and error models. Possibilities for beam-based optimization of collimator settings are described.  
 
WEPLT007 Installation of the LHC Experimental Insertions focusing, bunching, quadrupole, beamloading 1828
 
  • S. Bartolome-Jimenez, G. Trinquart
    CERN, Geneva
  The installation of the LHC experimental insertions, and particularly the installation of the low-beta quadrupoles, raises many technical challenges due to the stringent alignment specifications and to the difficulty of access in very confined areas. The compact layout with many lattice elements, vacuum components, beam control instrumentations and the presence of shielding does not allow for any improvisation in the installation procedure. This paper reviews all the constraints that need to be taken into account when installing the experimental insertions. It describes the chronological sequence of installation and discusses the technical solutions that have been retained.  
 
WEPLT008 Simulated Emittance Growth due to Electron Cloud for SPS and LHC focusing, bunching, quadrupole, beamloading 1831
 
  • E. Benedetto, D. Schulte, F. Zimmermann
    CERN, Geneva
  • G. Rumolo
    GSI, Darmstadt
  The emittance growth caused by an electron cloud is simulated by the HEADTAIL code. The simulation result depends on the number of beam-cloud "interaction points"(IPs), the phase advance between the IPs, the number of macro-particles used to represent beam and cloud, and on the betatron tune. Simulations include a transverse feedback system and, optionally, a large chromaticity, as employed in actual SPS operation. Simulation results for the SPS are compared with observations, and the emittance growth in the LHC is computed as a function of the average electron density.  
 
WEPLT009 Dynamics of the Electron Pinch and Incoherent Tune Shift Induced by Electron Cloud focusing, bunching, proton, quadrupole 1834
 
  • E. Benedetto, F. Zimmermann
    CERN, Geneva
  When a proton bunch passes through an electron cloud, the cloud electrons are attracted by the beam electric field; their density strongly increases near the beam centre. This gives rise to an incoherent proton tune shift, which depends on the longitudinal and radial position within the bunch. We present an analytical description of the 'electron pinch' and the resulting proton tune shift, for a circular symmetry and a Gaussian cloud. Benchmarking and extending the results by computer simulations, we explore the effects of different longitudinal beam profiles and of the nonlinear transverse force.