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Abstract

When a proton bunch passes through an electron cloud,
the cloud electrons are attracted by the beam electric field
and their density strongly increases near the beam centre.
This gives rise to an incoherent proton tune shift, which
depends on the longitudinal and radial position within the
bunch. We present an anal ytical description of the’ electron
pinch’ and the resulting proton tune shift for acircular sym-
metry and a Gaussian cloud, considering alinear transverse
force and various longitudinal beam profiles. Benchmark-
ing and extending the results by computer simulations, we
can also explorethe effects of anon-linear transverseforce.

INTRODUCTION

During the passage of a proton (or positron) bunch
through an electron cloud, the electrons are accumulated
around the beam center. This pinch effect produces an
incoherent tune shift and a tune spread in the bunch that
could cause a slow emittance growth over successiveturns.
We compute the electron-cloud density evolution during a
bunch passage and from this we infer the tune shift of indi-
vidual beam particles, for acylindrically symmetric model.

We first solve the equations of motion of a single elec-
tron in the bunch potential under the simplifying approx-
imation of a linear transverse force. Next, assuming an
initially Gaussian electron distribution of finite tempera-
ture in transverse phase space, we compute the evolution
of the electron density during the bunch passage, using Li-
ouville's theorem. Finally, from the electron distribution,
we calculate the tune shift experienced by individua pro-
tons as afunction of their transverse and longitudina posi-
tion. An explicit analytical solution is derived for an arbi-
trary longitudinal profile, under the assumption of alinear
transverse force. Approximationsfor low electron temper-
ature are discussed. In the second part of this paper we
employ a computer simulation to extend the analysis to a
non-linear transverse force for a Gaussian transverse beam
profile. From the simulation result, we estimate the inco-
herent tune spread in the LHC at injection.

ELECTRON DENSITY EVOLUTION,
APPROXIMATION OF LINEAR FORCE
We start from the electron distribution in the four-

dimensional transverse phase space. In the linear force
approximation, the horizontal and vertical planes are un-
coupled. We thusfactorize the el ectron density distribution
and the spatial density as follows:
p(@, &, y,79,t) = pa(, 2, 1) py(y, ,t) )
Ne(r,t) = ne(z, y,t) = ng(z, t) ny(y,t) 2
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where the projected spatial densities are obtained by inte-
grating the projected phase-space densities over the elec-
tron velocities:

ng(x,t) = /dj?pm(l‘,.i,t) . 3

By our symmetry assumption n. depends on x and y only
interms of theradiusr = /22 + 2.

From Liouville's theorem, we know that the electron
density in the phase spaceislocally preserved. Hence, with
the hypothesis of an initially Gaussian distribution for the
electrons in their transverse phase space, we can write for
the horizontal distribution

e 0 e o,
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Here, the parameters oy and & denote the horizontal rms
size of theinitial electron distribution and its horizontal rms
velocity, respectively. For the circularly symmetric prob-
lem that we consider here, the vertical density has the same
form with identical rms size and velocity. We will later
obtain some approximate compact expressions for the spe-
cial casethat theinitial velocities of the electrons are small
compared with the (correlated) velocities acquired in the
beam potential, i.e. 69 < w,0yp.

If we are able to solve and invert the equation of motion
of asingle electron in the bunch potential, we can express
(x0, o) as afunction of (x,,t) and insert the resulting
expressions on the right-hand side of (4) in order to obtain
the electron density at thetime ¢ L.

pI(£C7.I',t) = p:v(x()ait()?()) = 2770'0(50

Approximation of Linear Force

Under the linear approximation (strictly valid for r <«
o) the motion of an electron in the bunch potential is de-
coupled for the two transverse planes. The equation in the
horizontal plane (asimilar expression holdsfor the vertical)
is[2]:

F+wit)r=0 (5)
where: 9 9, o
we (t) = Ap(t)rec” /oy (6)
cisthevelocity of light, r. = e?/(4megmec?) istheclassi-
cal electron radius, o, is the transverse beam size (namely
or = 0, = oy) and Ay(t) is the beam longitudinal profile
asafunctionof timet¢ = (no, — z)/c. We definet = 0 as
the moment when the bunch enters the cloud (we will use
n = 3) and z is the longitudinal distance from the bunch
center.

With the linear approximation, it is possible to solve the

equation of mation (5) and invert the solution, yielding

1A similar method was used in [1] to compute the beam density evo-
lution under the influence of nonlinear field errors.
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(z0,20) asafunction of (z, z) in the form:
xo = a(t)r+0b(t)E (7)
o = c(t)r+dt)t,

where the coefficients a(t),...,d(t) depend on the longitudi-
nal distribution and for a conservative system (ad — bc) =
1. The electron distribution in phase space is computed by
inserting (7) into (4) and the spatial electron density evo-
lution is obtained by integrating the distribution function
over thevelocitiesasin (3).

Tune Shift

From the electron density, we can compute the electric
field acting on the protons of the bunch (see again [2] for
details) and the incoherent tune shift induced on the beam
over one turn around the ring. The tune shift in the hori-
zontal planeis given by

1
AQ, = e Cdsﬁ(s)Akr (8)
Ak, = 2 23Ee,z(r,z)’ ©)
Ymyc Ox

where E. . (r, z) isthefield experienced by a proton at po-
sition (r, z), and is equal to:

AQq(r, 2) =
jéds ﬂ(s)%p {ﬁe(r,z) - r%/.ﬁe(r’,z)r'dr’] .

In principle, the proton beam size depends on the beta func-
tions and, thus, also the electron density 7. (r, z) depends
on the position around the ring s. In the following we will
use the smooth focusing approximation, (i.e. 5(s) = 3 =
const) and we also assume a constant electron-cloud den-
Sity, so that the integrand becomesindependent of s.

We now derivethetune shift for two specific longitudinal
bunch profiles and for the general case.

(10)

Uniform Bunch Profile

In the case of A\ (t) = \, = const the equation of mo-
tion reduces to the harmonic oscillator, whose solution can
bewrittenintermsof C' = cos(w.t) and S = sin(w.t) The
tune shift (8) for a particle at position r and z in the bunch
is

BLAT, 1
AQy(r, 2) =3 oy
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4dryC?04 C%g%g

2,.2
wer

_ N4
e+ 57ay) O (@er) 4

where L is the circumference of the ring and the smooth
focusing assumption has been invoked. The tune shift de-
pendson thelongitudinal position with respect to the bunch
center and it decreases parabolically with transverse dis-
tance r. We note that for 69 < ogwe, the tune shift
becomes maximum at periodic intervals along the bunch,
when C = 0.

1

Arbitrary Longitudinal Profile

If the longitudinal distribution of the beam, A.(t),
is not a constant, but the change is adiabatic so that:
[3we /2we| , |@e/we| < 2w, , we can apply the WKB ap-
proximation [3]. Then the general solution, dropping small
terms, is

cos S(t) +

) sin S(¢) (11)

we(t we(t

/Ot we(t) dt

where ¢; and ¢, are determined from the initial conditions
xo and Zo. In this general case — but as before for a linear
transverse force —, we can still invert the solution and de-
termine (zo, <o) as afunction of (z, &), asin Eq.(7), and
insert the result into the expression of the electron distribu-
tion in phase space (4). The density n.(r,¢) obtained by
integrating over the velocities becomes

92}
—
~
=
Il

(12)

_ e s
~ 2D
D(t) = d(t)*c5 + b(t)*65 (14
which depends on the longitudinal profile of the bunch.
Again assuming the smooth focusing approximation, the

tune shift in the horizontal or vertical plane has the general
form:

AQqy(r, z) = bett (1 =5 +D)) . (15)

(13)

ne(r,t)
with

27y r2 D

Expanding and keeping only the lowest-order terms in
r? /D, thissimplifies to

BLAeT 3r?
AQu(r2)~ o (1= 15

(16)

Gaussian Longitudinal Profile
In the case of abunch with aGaussian longitudinal shape

5 Ny 2%
A = 202 € (—oo,+ 17
(2) = e 2 € (—o0,400)  (17)
we have
_ (noz—ct)?
we(t) = Qe 2
oA\ n 1 /et
a - 76 Npc?
020,21

The coefficients b and d in (14) are

o) = —elTHET) Sain s
dit)y = 6(%_%2)0085(15)
+e(%2+§7n42) L EsmS(ﬁ)
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with 2 = ct/o,.
The tune shift at the start of the bunch (2 = 0) is

AQu(r,2) = G

2
as expected for the unperturbed initial cloud density [4].

18
dryog (18)

EXTENSION TO NON-LINEAR
TRANSVERSE FORCE

Via a simple tracking code, we extended the analysis to
electrons moving in the potential of a transverse Gaussian
beam. For the simulationswe took the parametresfor LHC
a injection, listed in Table 1.

Table 1: Parameters used in the simulations for LHC at
injection

electron cloud density pe 6x10"Tm3
bunch population Ny 1.1 x 10!
rms bunch length o, 0.115m
rms beam size op 0.884 mm
nominal tunes Qqy 64.28,59.31
electron cloud size oo 10 oy,
electroninitial velocity &g weop/100

The top row of Fig. 1 shows the electron density evolu-
tion at the centre of the pipe, during the passage of abunch,
computed with the linear force approximation (left) and for
the Gaussian beam profile (right). The simulation with the
linear force acting on the electrons is consistent with the
analytical prediction (dotted green line). The small shiftin
the position of the peaks depends on the initial condition
and the dlicing in our simulation. On the other hand, if the
electrons move in the potential of a transversely Gaussian
beam, the modulation almost disappears after a quarter os-
cillation, from when on the density stays about constant.
In the case of the non-linear force, in fact, the electrons do
not reach the centre of the bunch simultaneously, but their
oscillation frequency depends on theinitial amplitude. The
bottom row displays snapshots of the radial distribution of
the electrons at different times during the bunch passage
both for the linear force approximation and for the Gaus-
sian potential.

As can be seen in Fig. 1 the density enhancement at the
center of the bunch, for a Gaussian transverse beam dis-
tribution, is about a factor 50. This alows us to roughly
estimate the tune spread via

(19)

where n. denotes the enhanced electron density. For the
exampleof the LHC, thisgivesthevalue AQ ~ 0.13, if the
initial unperturbed electron cloud density is6 x 101! m=3.
A frequency map anaysis [5] from HEADTAIL simula
tions[6] in afrozen-field approximation gave atune spread
of =~ 0.05 a z = +20,. Thistune spread corresponds to
adensity enhancement of afactor 20 [7], in nearly perfect
agreement with the value at 420, in the top right picture
of Fig. 1.
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Figure 1: Top: Electron density vs. time at the centre of the
pipe, during the passage of a bunch. In red the simulated
density evolution and dotted in green the analytical resullts.
Bottom: Snap shots of radial distribution (p x r) at 4 dif-
ferent times during the bunch passage. The pictures are
obtained assuming alinear transverse force (left) and for a
Gaussian transverse beam distribution (right). A Gaussian
bunch profileis assumed in z.

SUMMARY

We presented an analytical approach to compute the in-
oherent tune shift caused by the electron pinch during the
passage of a bunch through the electron cloud. An expres-
sion for the electron density evolution was derived for any
longitudinal bunch profile, a linear transverse force, and
circular symmetry. From the pinched electron distribution,
the incoherent tune shift has been computed as a function
of the radial and longitudinal position inside the bunch.

Via a simple tracking code, we extended this study to
electrons moving in the nonlinear field of a beam with
Gaussian transverse profile. In this case, the electrons do
not reach the centre of the bunch simultaneously, and after
a quarter oscillation the density at the center of the bunch
stays roughly constant. It is easy to estimate the tune shift
from the value of this stationary density enhancement.
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