Author: Ghasem, H.
Paper Title Page
WEPRO057 Effect of the Electron Beam Emittance on the ILSF Radiation of Sources and Beamline Design 2075
 
  • A. Gholampour, S. Amiri, H. Ghasem, H. Khosroabadi, J. Rahighi
    ILSF, Tehran, Iran
  • H. Ghasem, M. Lamehi Rashti, J. Rahighi
    IPM, Tehran, Iran
 
  At the Iranian Light Source Facility (ILSF), two different storage ring options are being studied. The designs differ in emittance. In the first option the calculated emittance is 3.278 nm-rad whereas for the second option emittance is 0.937 nm-rad. In this paper the electron beam emittance effects on the source radiation properties from bending magnet, wiggler and undulator, X-ray optics and the beamline design are carefully studied. The present calculations demonstrate that in the case of 0.937 nm-rad brilliance of undulator is increased by a factor of about 5. For bending magnet, flux is reduced almost 1 order of magnitude for hard x-ray regime. Because of smaller size of the source for undulator at the case of 0.937 nm-rad, we can achieve to a smaller spot size and higher resolution with easier focusing systems and usual kind of monochromator than the emittance of 3.278 nm-rad and for the bending magnet hard x-ray beamline, size of the mirrors reduced 30% in the 0.937 nm-rad emittance case, so its result is shorter mirror, low cost and perhaps more challengeable heat load.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO058 Photoemission Electron Microscopy Branch of Spectromicroscopy Beamline of the Iranian Light Source Facility 2078
 
  • S. Amiri, H. Ghasem, A. Gholampour, H. Khosroabadi, J. Rahighi
    ILSF, Tehran, Iran
  • H. Ghasem, M. Lamehi Rashti
    IPM, Tehran, Iran
 
  The Spectromicroscopy beamline is one of the day one beamlines of the Iranian Light Source Facility project in the field of soft x-ray spectroscopy. This beamline is designed to cover the 90-2500eV energy range with about 8000 resolving power, and the minimum spot size of about 10×4 micrometer 2 at sample position. Brilliance, flux and photon size and divergence in the whole range of energy has been calculated for a 4.3m linear undulator using SPECTRA code. This undulator has 1015 ph/s(0.1% B.W.) photon flux at 96 eV energy & 400 mA electron current. A circular pinhole with maximum diameter size of 2.52mm has been inserted in a distance of 10m from the source to pass 95% radiated. Primary layout of this branch includes a collimating mirror, a varied included-angle plane grating monochromator, and a KB bendable elliptical cylinder mirror. The ray tracing calculation by using computational software SHADOW has been done to determine and optimize of the important optical parameters. Three plane gratings with different uniform line density (700, 900, 1200 lines/mm) have been used to cover the whole energy range with the resolving power of 0.75-0.8×104 depending on the photon energy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME006 DESIGN AND CONSTRUCTION OF A 4 KW, 500 MHZ SOLID STATE RF AMPLIFIER AT IRANIAN LIGHT SOURCE FACILITY (ILSF) 2264
 
  • A. Shahverdi, H. Ajam, H. Ghasem, Kh.S. Sarhadi
    ILSF, Tehran, Iran
 
  Solid state RF power amplifiers have been considered as an attractive candidate for providing the high power RF power required in increasing number of accelerator applications in recent years. Due to the advantages of these amplifiers and based on the successful experience done in other light sources; ILSF RF group has started R&D in design and fabrication of solid state amplifiers. Two modules based on two different LDMOS transistors have been developed successfully at 500MHz. The measured characteristics are presented and compared in this paper. Combining of 8 such modules is under test to achieve 4kW output power as the first stage of the conceptually designed combining network. This paper outlines the design concept of the different parts of the amplifiers and presents the experimental results obtained so far.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME030 Design and Construction of a Prototype Sputter ion Pump in ILSF 2323
 
  • O. Seify, H. Ghasem, S. Kashani, J. Rahighi
    ILSF, Tehran, Iran
  • H. Ghasem
    IPM, Tehran, Iran
 
  Design and construction process of special kind of sputter ion pump is described briefly in this paper. In order to investigate the optimization of effective parameters in choosing and designing ILSF ion pumps, this pump has been designed and manufactured. By optimizing some parameters such as dimension and shape of penning cells, anode voltage, magnetic field and internal structure of pump, it is possible to significantly decrease the cost of construction and operation of synchrotron vacuum system. One of the most important advantages of this design, is that the initial parameters and finally internal structure of the prototype pump are changeable easily. The effect of parameters like anode voltage, magnetic field etc. on pumping speed and final pressure are described. With the existing optimization it is expected that an ultimate pressure of 1x10-11 Torr could be achieved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO045 Design and Construction of a Thermionic Cathode RF Electron Gun for Iranian Light Source Facility 2965
 
  • A. Sadeghipanah, H. Ghasem, J. Rahighi, Kh.S. Sarhadi
    ILSF, Tehran, Iran
 
  We present a program for the design and construction of a thermionic cathode RF gun to produce bright electron beams, consisting in the first step toward the possible development of S band linac based pre-injector at Iranian Light Source Facility (ILSF). The program is aimed at the goal to attain a beam quality as requested by ILSF. As a first step within this mainstream, we are currently developing a thermionic cathode side coupling RF electron gun which is expected to deliver 100 pC bunches with emittances below 2 mm-mrad at 2.5 MeV. We report the performed simulation and design activity, as well as cold test results of first fabricated prototype, which are in good agreement with simulation results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO046 100 MHz RF System as an Alternative for the Iranian Light Source Facility 2968
 
  • S. Pirani, H. Ghasem, M. Moradi, Kh.S. Sarhadi
    ILSF, Tehran, Iran
 
  The Iranian Light Source Facility (ILSF) RF system was conceptually designed based on ILSF requirements for a 3GeV storage ring and 400 mA beam current at 500 MHz RF frequency. The development of HOM damped cavity with simpler structure at 100MHz and advantages of reducing frequency as investigated at MAX Lab, provided an alternative of 100MHz RF system to be explored for ILSF. RF frequency change and its effects on the beam and machine parameters as well as the availability and cost of RF system components have been studied for ILSF. The conceptual design of a 100MHz RF system and the comparison between 500 MHz and 100 MHz RF frequencies are presented in this report. This paper, furthermore, provides details about the 100MHz RF cavity designed by ILSF RF group based on MAX Lab cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO106 Developing Matlab-based Accelerator Physics Application for the ILSF Commissioning and Operation 3143
 
  • E. Ahmadi, H. Ghasem, J. Rahighi
    ILSF, Tehran, Iran
  • H. Ghasem
    IPM, Tehran, Iran
 
  The ILSF control system is supposed to operate with Epics system. The simultaneous use of Matlab Middle Layer (MML) and Accelerator Toolbox (AT) allow for parallel, high level machine control and accelerator physics application that communicate with control system via Epics via channel access. The MML has been papered for ILSF storage ring. Some high level applications are also tested in ILSF storage ring via MML.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO069 Progress Status of the Iranian Light Source Facility Laboratory 240
 
  • J. Rahighi, E. Ahmadi, H. Ajam, M. Akbari, S. Amiri, J. Dehghani, R. Eghbali, S. Fatehi, M. Fereidani, A. Gholampour, A. Iraji, M. Jafarzadeh, B. Kamkari, S. Kashani, P. Khodadoost, H. Khosroabadi, M. Lamehi, M. Moradi, H. Oveisi, S. Pirani, M. Rahimi, N. Ranjbar, R. Rasoli, M. Razazian, A. Sadeghipanah, F. Saeidi, R. Safian, E. Salimi, Kh.S. Sarhadi, O. Seify, M.Sh. Shafiee, A. Shahveh, Z. Shahveh, A. Shahverdi, D. Shirangi, E.H. Yousefi
    ILSF, Tehran, Iran
  • D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • H. Ghasem
    IPM, Tehran, Iran
 
  The Iranian Light Source Facility Project (ILSF) is a 3 GeV third generation light source with a current of 400 mA which will be built on a land of 50 hectares area in the city of Qazvin, located 150 km West of Tehran. ILSF conceptual design report, CDR, was published in October 2012. To have a competitive leading position in the future, 489.6 m storage ring of ILSF is designed to emphasize on small emittance electron beam( 0.93 nm-rad), high photon flux density, brightness, stability and reliability. Moreover, 40% of 489.6 m ring circumference is straight sections (14×8 m+ 14×6 m) which are long enough for the commonly used insertion devices. Some prototype accelerator components such as high power solid state radio frequency amplifiers, LLRF system, thermionic RF gun, Storage ring H-type dipole and quadruple magnets, Hall probe system for magnetic measurement and highly stable magnet power supplies have been constructed in ILSF R&D laboratory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO071 Wake Field and Impedance Calculation due to the Beam Position Monitor in the ILSF Storage Ring 246
 
  • H. Ghasem
    IPM, Tehran, Iran
  • M. Razazian
    ILSF, Tehran, Iran
 
  The Beam Position Monitors (BPMs) are usually used in the particles accelerators to observe position of the beam and to record longitudinal bunch shape. As the vertical beam size demands beam stabilities on the submicron level in the particle accelerators, there must be a sever precision on designing and fabrication of the BPMs. In this paper, we have explored effect of the BPMs on the total impedance and loss factor of the ILSF storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO072 Lattice Design History of the Iranian Light Source Facility Storage Ring 249
 
  • H. Ghasem
    IPM, Tehran, Iran
  • E. Ahmadi, F. Saeidi
    ILSF, Tehran, Iran
 
  Several lattice alternatives have been designed for the 3 GeV storage ring of Iranian Light Source Facility (ILSF). Design of the ILSF storage ring emphasizes an ultra low electron beam emittance, great brightness, stability and reliability which make it competitive in the operation years. In this paper, we give a brief review of the main designed lattice candidates for the ILSF storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO073 Design of Iranian Light Source Facility RF Shielded Bellows 252
 
  • H. Ghasem
    IPM, Tehran, Iran
  • J. Etemad Moghadam
    ILSF, Tehran, Iran
 
  Total impedance is one of the most effective parameters for proper operation of an accelerator system. This quantity is evaluated with the summation of individual component impedance of the vacuum pipe and is desired to be as low as possible. The bellows have very significant effects on total impedance of the accelerator systems particularly synchrotron light source storage rings. Design of the bellow for Iranian Light Source Facility (ILSF) with a practical approach for fabrication has been down. Minimization of the total impedance budget, loss factor and the resulting wake field due to the passage of 400 mA electron beam is the main goal of our design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO074 Super Bright Lattice for the Iranian Light Source Facility Storage Ring 255
 
  • H. Ghasem
    IPM, Tehran, Iran
  • E. Ahmadi
    ILSF, Tehran, Iran
 
  To have a competitive leading position in the future and to obtain ultra low beam emittance, save energy and minimizing operation cost, we have designed lattice based on the 5 low field dipole magnets per cell for the storage ring of Iranian light Source Facility (ILSF). The designed lattice has the capability of both soft and hard x-ray radiation from central dipoles. In this paper, we give specifications of lattice linear and nonlinear optimization and review properties of the radiated x-ray.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO086 Iranian Light Source Facility Storage Ring Low Field Magnets 1241
 
  • F. Saeidi, J. Dehghani, J. Rahighi, M. Razazian, A. Shahveh
    ILSF, Tehran, Iran
  • H. Ghasem
    IPM, Tehran, Iran
  • R. Pourimani, F. Saeidi
    Arak University, Arak, Iran
 
  Iranian Light Source Facility (ILSF) is a 3 GeV Synchrotron light source with the circumference of 489.6 m. Using locally available material and the emittance of less than 1 nm-rad are two main points of the ILSF storage ring lattice, consisting of 56 low field pure bending magnets, 252 quadrupoles and 196 sextupoles with additional coils for the correctors and skew quadrupoles. The physical designs of these magnets have been performed relying on two dimensional codes POISSON [1] and FEMM [2]. Three dimensional RADIA [3] was practiced too, to audit chamfering values.
Farhad. Saeidi@Ipm.ir
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO088 ILSF Booster Magnets for the High Field Lattice 1244
 
  • S. Fatehi, H. Ghasem
    IPM, Tehran, Iran
 
  Iranian light source facility is a 3 GeV storage ring. There are currently two choices for the lattice; high field and low field lattices. In this paper magnet design of the high field booster ring is discussed. High field booster ring is supposed to work at injection energy of 150KeV and guide the electrons to the ring energy 3GeV. It consist of 48 combined bending magnet in 1 type and 92 quadrupole in 6 families .Using two dimensional codes POISSON and FEMM, a pole and yoke geometry was designed, also cooling and electrical calculations have been done and mechanical drawings were sketched
samira.fatehi@ipm.ir
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME031 Magnetic Design of the First Prototype Pure Permanent Magnet Undulator for the ILSF 2326
 
  • A. Ramezani Moghaddam, J. Rahighi
    ILSF, Tehran, Iran
  • H. Ghasem
    IPM, Tehran, Iran
  • M. Lamehi Rashti
    Nuclear Science & Technology Research Institute, Tehran, Iran
  • A. Ramezani Moghaddam
    NSTRI, Tehran, Iran
 
  Iranian light source facility (ILSF) is a 3GeV, 400 mA, 3rd generation light source under design and construction. This paper describes the details of the preliminary magnetic design of the first prototype PPM undulator for the ILSF. In the preliminary design, the undulator period and some other parameters have been determined to reach desired x-ray spectrum to be used for soft x-ray application. A PPM layout and a model undulator with 16 poles is used to calculate the properties of the designs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)