Paper | Title | Other Keywords | Page |
---|---|---|---|
WEP24 | The State Machine Based Automatic Conditioning Application for PITZ | gun, electron, vacuum, controls | 88 |
|
|||
The Photo Injector Test Facility at DESY in Zeuthen (PITZ) was built to test and to optimize sources of high brightness electron beams for Free-Electron Lasers (FELs). In order to achieve high accelerating gradients and long RF pulse lengths in the RF gun cavities an extensive and safe RF conditioning is required. A State Machine based Automatic Conditioning application (SMAC) was developed to automate the RF conditioning processes, allowing for greater efficiency and performance optimization. SMAC is written in Java and uses State Chart XML (SCXML) as the finite-state machine execution environment based on Harel statecharts. It employs the Distributed Object-Oriented Control System (DOOCS) and Three-fold Integrated Networking Environment (TINE) for the communication with the control system of PITZ. The graphical user interface (GUI) is created by using the Java Swing toolkit. Communication between GUI and SXML processing layer is performed via Document Object Model (DOM) events. The SMAC application has been successfully applied to RF conditioning of several gun cavities at PITZ. | |||
![]() |
Poster WEP24 [0.366 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-PCaPAC2018-WEP24 | ||
About • | paper received ※ 01 October 2018 paper accepted ※ 17 October 2018 issue date ※ 21 January 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEP32 | The Design and Development of an Auto-conditioning SRF Cavities Software | SRF, GUI, interface, EPICS | 111 |
|
|||
As one of the major components of ADS Injector II, SRF (Superconducting Radio Frequency) cavities are used to transmit the intense-beam proton reliably, stably and efficiently. Before starting the process of transmitting particle beams, SRF cavities are routinely conditioned to achieve its optimized status in the deliverable energy. The whole conditioning process is involved in various types of hardware devices and is also a heavy task for engineers to manually operate these equipment. In this paper, the software ANSC is presented in details, which is used to automatically condition SRF cavities. At the present, ANSC is in the stage of testing. During the testing, ANSC indeed can achieve comparative results compared with manually operated conditioning.
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-PCaPAC2018-WEP32 | ||
About • | paper received ※ 08 October 2018 paper accepted ※ 16 October 2018 issue date ※ 21 January 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THCA2 | Development of MicroTCA-based Low-level Radio Frequency Control Systems for cERL and STF | LLRF, controls, FPGA, linac | 124 |
|
|||
Low-level radio frequency (LLRF) control systems based on µTCA standard have been developed for facilities such as compact energy recovery linac (cERL) and superconducting test facility (STF) at the High Energy Accelerator Research Organization (KEK), Japan. Three different types of boards were developed according to their different applications. Experimental physics and industrial control system (EPICS) was selected as the data communication system for all of these µTCA boards. The LLRF systems showed good performance during the beam commissioning. This paper presents the current status of the µTCA-based LLRF systems in the cERL and STF. | |||
![]() |
Slides THCA2 [2.000 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-PCaPAC2018-THCA2 | ||
About • | paper received ※ 10 October 2018 paper accepted ※ 15 October 2018 issue date ※ 21 January 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THP18 | Operational Experience of the Digital LLRF Control System at the Booster Ring of Taiwan Photon Source | LLRF, booster, controls, operation | 204 |
|
|||
The purpose of a Low-Level Radio Frequency (LLRF) system is to control the accelerating cavity field amplitude and phase. To have better RF field stability, precise control and high noise reduction, a digital LLRF control system based on Field Programmable Gate Arrays (FPGA) was developed at NSRRC. We replaced the analog LLRF system with a digital version for the TPS booster ring at the beginning of 2018. During routine operation of the booster RF, some faults occurred when the digital LLRF operated in the energy savings mode. The performance and operational experience of the digital LLRF for the TPS booster will be presented here. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-PCaPAC2018-THP18 | ||
About • | paper received ※ 02 October 2018 paper accepted ※ 15 October 2018 issue date ※ 21 January 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||