Keyword: SRF
Paper Title Other Keywords Page
WEP02 BLISS - Experiments Control for ESRF Beamline controls, interface, hardware, TANGO 26
 
  • V. Michel, A. Beteva, T.M. Coutinho, M.C. Dominguez, M. Guijarro, C. Guilloud, A. Homs, J.M. Meyer, E. Papillon, M. Perez, S. Petitdemange
    ESRF, Grenoble, France
 
  BLISS is the new ESRF control system for running experiments, with full deployment aimed for the end of the EBS upgrade program in 2020. BLISS provides a global approach to run synchrotron experiments, thanks to hardware integration, Python sequences and an advanced scanning engine. As a Python package, BLISS can be easily embedded into any Python application and data management features enable online data analysis. In addition, BLISS ships with tools to enhance scientists user experience and can easily be integrated into TANGO based environments, with generic TANGO servers on top of BLISS controllers. BLISS configuration facility can be used as an alternative TANGO database. Delineating all aspects of the BLISS project from beamline device configuration up to the integrated user interface, this poster will present the technical choices that drove BLISS design and will describe the BLISS software architecture and technology stack in depth.  
slides icon Slides WEP02 [8.409 MB]  
poster icon Poster WEP02 [1.674 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-PCaPAC2018-WEP02  
About • paper received ※ 04 October 2018       paper accepted ※ 30 January 2019       issue date ※ 21 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP32 The Design and Development of an Auto-conditioning SRF Cavities Software GUI, cavity, interface, EPICS 111
 
  • H. Cao, Y.X. Chen
    IMP/CAS, Lanzhou, People’s Republic of China
 
  As one of the major components of ADS Injector II, SRF (Superconducting Radio Frequency) cavities are used to transmit the intense-beam proton reliably, stably and efficiently. Before starting the process of transmitting particle beams, SRF cavities are routinely conditioned to achieve its optimized status in the deliverable energy. The whole conditioning process is involved in various types of hardware devices and is also a heavy task for engineers to manually operate these equipment. In this paper, the software ANSC is presented in details, which is used to automatically condition SRF cavities. At the present, ANSC is in the stage of testing. During the testing, ANSC indeed can achieve comparative results compared with manually operated conditioning.
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-PCaPAC2018-WEP32  
About • paper received ※ 08 October 2018       paper accepted ※ 16 October 2018       issue date ※ 21 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)