A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V    

beam-losses

   
Paper Title Other Keywords Page
MOP15 TRASCO-RFQ as Injector for the SPES-1 Project target, linac, rfq, focusing 66
 
  • P. Posocco, M. Comunian, A. Pisent
    INFN/LNL, Legnaro, Padova
  • E. Fagotti
    INFN Milano, Milano
  The funded first phase of SPES foresees the realization at LNL of a facility able, on one hand, to accelerate a 10 mA protons beam up to 20 MeV for nuclear studies and, on the other hand, to accelerate a 30 mA protons beam up to 5 MeV for BNCT and preliminary ADS studies. In this two-way facility, the TRASCO RFQ will operate in two different current regimes. Moreover a specific MEBT has to be designed able to match the beam to the following superconducting linac and to deliver a beam with the correct characteristics to the neutron production target for the BNCT studies.  
 
MOP71 Advanced Beam-Dynamics Simulation Tools for RIA linac, simulation, rfq, acceleration 186
 
  • T.P. Wangler, R. Garnett
    LANL, Los Alamos, New Mexico
  • N. Aseev, P.N. Ostroumov
    ANL/Phys, Argonne, Illinois
  • R. Crandall
    TechSource, Santa Fe, NM
  • D. Gorelov, R.C. York
    NSCL, East Lansing, Michigan
  • J. Qiang, R. Ryne
    LBNL, Berkeley, California
  Understanding beam losses is important for the high-intensity RIA driver linac. Small fractional beam losses can produce radioactivation of the beamline components that can prevent or hinder hands-on maintenance, reducing facility availability. Operational and alignment errors in the RIA driver linac can lead to beam losses caused by irreversible beam-emittance growth and halo formation. We are developing multiparticle beam-dynamics simulation codes for RIA driver-linac simulations extending from the low-energy beam transport (LEBT) line to the end of the linac. These codes run on the NERSC parallel supercomputing platforms at LBNL, which allow us to run simulations with large numbers of macroparticles for the beam-loss calculations. The codes have the physics capabilities needed for RIA, including transport and acceleration of multiple-charge-state beams, and beam-line elements such as high-voltage platforms within the linac, interdigital accelerating structures, charge-stripper foils, and capabilities for handling the effects of machine errors and other off-normal conditions. We will present the status of the work, including examples showing some initial beam-dynamics simulations.  
 
TUP22 A Simulation Study on Chopper Transient Effects in J-PARC Linac linac, simulation, emittance, injection 342
 
  • M. Ikegami
    KEK, Ibaraki
  • Y. Kondo, T. Ohkawa, A. Ueno
    JAERI, Ibaraki-ken
  J-PARC linac has an RF chopper system to reduce uncontrolled beam loss in the succeeding ring injection. The chopper system is located in MEBT (Medium Energy Beam Transport line) between a 3 MeV RFQ and a 50 MeV DTL, and consists of two RFD (Radio-Frequency Deflection) cavities and a beam collector. During the rising- and falling-times of the RFD cavities, the beams are half-kicked and cause excess beam loss downstream. In this paper, the behavior of these half-kicked beams is examined with 3D PARMILA simulations, and resulting beam loss is estimated.  
Transparencies
 
TUP23 A Simulation Study on Error Effects in J-PARC Linac emittance, linac, injection, simulation 345
 
  • M. Ikegami
    KEK, Ibaraki
  • Y. Kondo, T. Ohkawa, A. Ueno
    JAERI, Ibaraki-ken
  In high-current proton linacs, prevention of excess beam loss is essentially important to enable hands-on maintenance. In addition, requirements on the momentum spread and transverse emittance are quite severe for J-PARC linac to realize effective injection to the succeeding RCS (Rapid Cycling Synchrotron). As losses and beam-quality deterioration are believed to be mainly caused by various errors, such as misalignment, RF mistuning, etc, it is essentially important to perform particle simulations for J-PARC linac with as realistic errors as possible to estimate their effects. In this paper, effects of realistic errors on beam loss and beam-quality deterioration in J-PARC linac are examined with a systematic 3D simulations with PARMILA. Necessity of transverse collimation is also discussed.  
 
TUP29 Proton Beam Dynamics of the SARAF Linac simulation, linac, emittance, proton 354
 
  • A. Shor, D. Berkovits, G. Feinberg, S. Halfon
    SOREQ, Yavne
  • K. Dunkel
    ACCEL, Bergisch Gladbach
  We have performed proton beam dynamics simulation for the SARAF, 40 MeV and 4 mA, linac. The calculation is using the GPT code and includes effects of space charge. It demonstrates that for an initial 6D Waterbag distribution beam, a tune can be obtained with longitudinal rms emittance growth of about 10 % and transverse normalized rms emittance growth of 20%, and a transverse beam envelope of 5000 macro-particle well within the linac beam pipe. Beam loss is estimated by fitting a radial Gaussian to the particle distribution along the linac. A 1 nA beam envelope is obtained by extrapolating the tail of the radial-Gaussian function. The 1nA beam envelope is still well within the beam bore radius. Benchmark simulation with a 6D Gaussian initial distribution, with the same rms quantities, exhibits a more extended tail that may result in a higher beam loss. This point will receive a further study.  
Transparencies
 
TUP46 A New Control System for the S-DALINAC electron, alignment, target, diagnostics 372
 
  • M. Brunken, W. Ackermann, A. Araz, U. Bonnes, H.-D. Gräf, M. Hertling, A. Karnaukhov, W.F.O. Müller, O. Patalakha, M. Platz, A. Richter, B. Steiner, O. Titze, B. Truckses, T. Weiland
    TU Darmstadt, Darmstadt
  We will present recent results of the development of a new control system for the superconducting cw electron accelerator S-DALINAC. This system will be based on common industrial standards. Due to the large number of special devices existing to control the beamline, a simple and cheap communication interface is required to replace the current proprietary bus topology. The existing devices will be upgraded by a microcontroller based CAN bus interface as communication path to a control server. The servers themselves may be distributed over the location, giving required applications access to the device parameters through a TCP/IP connection. As application layer protocol for the Client Server communication a special binary protocol and a text protocol based on XML are considered.  
 
TUP74 The Beam Diagnostics System in the J-PARC LINAC linac, quadrupole, radiation, diagnostics 441
 
  • S. Lee, Z. Igarashi, T. Toyama
    KEK, Ibaraki
  • H. Akikawa
    JAERI/LINAC, Ibaraki-ken
  • F. Hiroki, J. Kishiro, S. Sato, M. Tanaka, T. Tomisawa
    JAERI, Ibaraki-ken
  • H. Yoshikawa
    JAERI/FEL, Ibaraki-ken
  Large amount of beam monitors will be installed in J-PARC linac. Electrostatic computations are used to adjust the BPM cross-section parameters to obtain 50 Ω transmission lines. BPMs are designed to control the offset between quadrupole magnet and BPM electrical centers less than 0.1mm. We present a procedure of beam based calibration/alignment (BBC/BBA) method to confirm the displacement of linac BPMs. The fast current transformer (FCT) has response of relative bunch phase <1%. To measure the beam energy at every accelerator tank and injection point of 3 GeV RCS, phase difference of FCT pairs are used, and 10-4 order energy resolutions can be expected. The loss monitor system (BLM) is composed of scintillator and Ar-CH4/CO2 gas filled proportional counter. To prevent the activation and heat load by intense beam loss, fast time response of loss signals is required. Profile measurements can also be used to determine the beam emittance of a matched beam in a periodic focusing lattice. The thin sensing wire scanner (WS) has been designed to obtain a current density distribution of the beam. This paper describes the instruments and R&D result of beam monitors in J-PARC linac.  
 
TH204 End-to-End Beam Dynamics Simulations for the ANL-RIA Driver Linac linac, simulation, emittance, ion 584
 
  • P.N. Ostroumov
    ANL/Phys, Argonne, Illinois
  The proposed Rare Isotope Accelerator (RIA) Facility consists of a superconducting (SC) 1.4 GV driver linac capable of producing 400 kW beams of any ion from hydrogen to uranium. The driver is configured as an array of ~350 SC cavities, each with independently controllable rf phase. For the end-to-end beam dynamics design and simulation we use a dedicated code, TRACK. The code integrates ion motion through the three-dimensional fields of all elements of the driver linac beginning from the exit of the electron cyclotron resonance (ECR) ion source to the production targets. TRACK has been parallelized and is able to track large number of particles in randomly seeded accelerators with misalignments and a comprehensive set of errors. The simulation starts with multi-component dc ion beams extracted from the ECR. Beam losses are obtained by tracking up to million particles in hundreds of randomly seeded accelerators. To control beam losses a set of collimators is applied in designated areas. The end-to-end simulations with the TRACK code have been extremely useful for studies of different options of the driver linac design with respect to beam quality, beam losses and sensitivity of beam parameters to various types of errors.  
Transparencies