TIONAL LABORATOR

United States Department of Energy

CANTRANCE

End-to-end Beam Dynamics Simulations for the RIA Driver Linac

Petr N. Ostroumov on behalf of RIA team

2004 Linear Accelerator Conference Lubeck, Germany, August 16-20, 2004

RIA related posters: MOP01, MOP71, MOP90 TUP26 THP05, THP06, THP15

Argonne National Laboratory Operated by The University of Chicago for the U.S. Department of Energy

Outline

1. RIA Facility

- Layout
- Major requirements

2. Beam Dynamics in the Driver Linac

- □ Major components of the Driver Linac
- Scope of the Beam Dynamics Studies
 - Design codes
 - Features of the new code TRACK
- Front End
- Stripping/Collimation
- End-to-end simulation

3. Beam Loss calculations

- Typical errors
- Beam-based steering algorithm
- Two options of the Driver Linac
- Results

4. Conclusion

Schematic of the RIA facility

RIA Driver Linac

Multi-ion, multi-charge-state, 1.4 GV Ion Linac 400 kW beams of ALL ions from protons to Uranium ECR

RFQ Low β SRF St. 1

Scope of the Beam Dynamics studies

• Overall linac architecture design to satisfy user requirements:

- □ Choice of initial parameters (frequency of SRF, # of strippers ...)
- □ Choice of focusing and accelerating lattice;
- Transition from RT to SC structures;
- Stripper locations;

Beam matching

- Longitudinal&transverse matching between the segments of the linac
- Optimize stripper location to obtain lowest effective emittance of multi-q beam
- **Beam** spot on the strippers $\sim \frac{1}{9}$ mm, short bunches
- □ 6D matching of multi-q beams after the strippers
- Iteration of the BD design with SRF performance
 - Peak surface field;
 - Mechanical design of cavities and cryostats;
 - Overall accelerator footprint.

Scope of the Beam Dynamics studies (cont'd)

Detailed BD simulations

- Develop realistic model of the linac
 - Include realistic 3D-fields for all elements
 - Stripper effects
 - Space charge effects in the ECR extraction region and LEBT
- Perform end-to-end simulations;
- Establish tolerance budget for errors and misalignments;
- □ Failure modes and reliability&availability analysis.
- Beam loss studies for various options of the linac.

Beam Dynamics Studies in the Driver Linac

 Significant design&simulation work has been performed in previous years

- multi-q beam acceleration and transport,
- bunching and RFQ acceleration of dual-charge state heavy-ion beams,
- steering compensation

•

- Recently we have concentrated on three main areas of the Driver Linac to complete End-to-End simulations:
 - Beam extraction from the ECR and acceleration up to 100 KV
 - Design of the achromatic LEBT to bring the dual charge state heavy-ion beam to the MHB
 - Massive parallel-processor simulations including all types of errors with the goal to detect controlled and uncontrolled beam losses along the linac

Main tool for the End-to-End simulations: the code TRACK

- Tracking of ions from ECR extraction aperture to the targets
- Integration of particle trajectories of multi-component ion beams in 6D phase space;
- Fields for all linac elements are obtained from 3-dimensional external codes.
- Misalignments and random errors are included. Beam-based corrective steering is an integral part of the code.
- Space charge of multiple component ion beams is obtained as a solution of 2D&3D Poisson equation.
- Beam passage through stripping foils&films is included
- LINUX version of the TRACK code runs on multi-processor computer cluster JAZZ at ANL.

Beam extraction from the VENUS ECR

Simulation of 13 ion species with total current 4 mA including 125 $e_{\mu}A$ for each charge state of Uranium 28+ and 29+

Our findings: a) $\epsilon_{T,rms} = 0.1 \pi \text{ mm mrad}$

- b) $\varepsilon_{\text{Total}} = 0.6 \pi \text{ mm mrad}$
- c) Beam waist downstream of the accelerating tube can be formed

Front End of the Driver Linac

LEBT must be designed for high current beams

MHB-RFQ-MEBT

Longitudinal emittance of 2q-beam at the entrance of the SC linac

BD studies: End-to-end simulation

LINAC-04, Lubeck, Germany

TRACK Features: stripper parameterization

U-238 at 85 MeV/u on 15 mg/cm² carbon stripper Energy loss: 3.4 MeV/u Thickness fluctuation ±5% produces ±170 keV/u

energy spread

Multi-Q beam matching, 180° bend, collimation

86 MeV/u (after the stripping)

Beam losses for the 400 kW driver beam

"main" collimator: ~2 kW "cleaning" collimators: ~85 W

Medium-β SC Linac

Emittance (million particles, 5% FWHM thickness fluctuation)

Vertical emittance

Longitudinal emittance

Error	Description	Value	Distribution
1	Cavity end displacements	.05 cm (max.)	Uniform
2	Sol. end displacements	.01505 cm (max.)	Uniform
3	Quad. end displacements	.01 cm (max.)	Uniform
4	Quad. rotation	2 mrad (max.)	Uniform
5	Cavity field error	0.5 % (r.m.s.)	Gaussian
6	Cavity phase error	0.5 deg (r.m.s.)	Gaussian
7	Stripper thickness Fluc.	5-10 % (FWHM)	Gaussian

- Multiple charge states: effective transverse emittance growth.
- Frequent machine-settings: retuning to accommodate many different ion species.
- Algorithm is an integral part of the TRACK code.
- Is capable of being implemented in real machines.

• Method:

- Measure beam positions at BPMs
- Apply known deflections (kicks) to the trajectory
- Measure the new beam positions and calculate the differences
- Measure beam responses to induced kicks
- **a** Find $\vec{\theta}$ that minimizes $\Phi \alpha (\vec{X} + R\vec{\theta})^2$
- Apply steering

Compensates 'static' misalignment errors.

Correction of multi-q beam position (50 seeds)

Residual deviation of beam centroid along the linac

Pioneering Science and

Technology

- Final step of BD design studies
- Simulations on the multi-processor computer
- Up to 500 randomly seeded accelerators with all types of errors and misalignments, typically 200 seeds
- Beam steering is applied
- Wide range of rf errors, thickness fluctuation and their combinations have been studied
- Number of tracked particles:
 - **u** Up to 10^6 , typically $2 \cdot 10^5$ in each seed
 - Total number of simulated particles 40 million, some cases up to 200 million.

Two options of the Driver Linac

Beam losses: Fractions & Locations

• Two types of losses:

- Controlled losses: Beam halo particles intercepted by collimators placed at designated areas of the accelerator (example: MTS after a stripper).
- Uncontrolled losses: Beam particles lost in the structures of the accelerator resulting in the radio-activation of the equipment.
- Case with only stripper thickness 5% (FWHM) fluctuations :
 - No uncontrolled losses.
 - **Controlled losses:** \sim 0.2 % in MTS-1 and \sim 0.3 % in MTS-2.

Case with errors:

- □ 6 combinations of errors have been studies (see next table).
- Uncontrolled losses observed in the high-β section of the baseline design.
- Controlled losses: slight increase but remains in the 0.2-0.4% range.

Beam emittances, image of 40 million particles

Pioneering Science and Technology

Beam losses in Watts/m

Pioneering Science and Technology

Results of beam loss studies

- Most critical sources of error:

 RF errors (field & phase).
 Fluctuations in stripper thickness.

 The Triple-spoke design is more tolerant of errors than the Baseline design.
 Uncontrolled losses observed for the Baseline design. To keep the losses below the 1 Watt/m limit:
 - □ RF errors: field < 0.5 % and phase < 0.5 deg.
 - □ Stripper thickness fluctuation < 5 % FWHM.
 - No uncontrolled losses observed for the Triple-spoke design even with RF errors (0.7%, 0.7deg, RMS) and thickness fluctuation of 10% FWHM.
 - More details: PHYSICAL REVIEW SPECIAL TOPICS ACCELERATORS AND BEAMS, VOLUME 00, ()

Beam loss studies in high-intensity heavy-ion linacs

P. N. Ostroumov,* V. N. Aseev, and B. Mustapha

Physics Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois, 60439, USA (Received 9 June 2004)

Conclusion

 Beam dynamics design and simulations tools are ready to support value engineering and construction phase of the RIA facility;

Acknowledgements

- V.N. Aseev
- A.A. Kolomiets
- E.S. Lessner
- B. Mustapha
- J.A. Nolen
- R.C. Pardo
- **K.W.** Shepard
- **T. Wangler**

