Author: Smaluk, V.V.
Paper Title Page
MOPAB039 Amplitude-Dependent Shift of Betatron Tunes and Its Relation to Long-Term Circumference Variations at NSLS-II 175
 
  • L.H. Yu, G. Bassi, Y. Hidaka, B. Podobedov, V.V. Smaluk, G.M. Wang, X. Yang
    BNL, Upton, New York, USA
 
  The com­par­i­son of am­pli­tude tune de­pen­dence mea­sured for NSLSII lat­tices with mod­els in­di­cated the large change of am­pli­tude tune de­pen­dence over time ap­par­ently can not be solely ex­plained by mag­nets vari­a­tion or beta func­tion changes, but it seems can be ex­plained by en­ergy changes. On the other hand, the en­ergy change re­quired by fit­ting with the am­pli­tude tune de­pen­dence change is too large to be ex­plained by the RF fre­quency change and the change of the sum of cor­rec­tors in the pe­riod of the mea­sure­ments. To ex­plain this ap­par­ent con­tra­dic­tion, our analy­sis shows the long term stor­age ring cir­cum­fer­ence change can ex­plain the ap­par­ent en­ergy change. Our data in­deed shows a sea­sonal change of the am­pli­tude tune de­pen­dence over long term ob­ser­va­tion. This clearly also in­di­cated a re­la­tion to long term closed orbit drift. Hence the cur­rent work in­di­cates a new strat­egy to study how to use am­pli­tude tune de­pen­dence as a guide­line to an­a­lyze long term lat­tice pa­ra­me­ter shifts and closed orbit drift, and im­prove the orbit and ma­chine per­for­mance sta­bil­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB039  
About • paper received ※ 09 May 2021       paper accepted ※ 26 May 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB041 Convergence Map with Action-Angle Variables Based on Square Matrix for Nonlinear Lattice Optimization 182
 
  • L.H. Yu, Y. Hidaka, F. Plassard, V.V. Smaluk
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
 
  We apply square ma­trix method to ob­tain in high speed a "con­ver­gence map", which is sim­i­lar but dif­fer­ent from fre­quency map. The con­ver­gence map is ob­tained from solv­ing non­lin­ear dy­nam­i­cal equa­tion by it­er­a­tion of per­tur­ba­tion method and study the con­ver­gence. The map pro­vides in­for­ma­tion about the sta­bil­ity bor­der of dy­nam­i­cal aper­ture. We com­pare the map with fre­quency map from track­ing. The re­sult in­di­cates the new method may be ap­plied in non­lin­ear lat­tice op­ti­miza­tion, tak­ing the ad­van­tage of the high speed (about 10~50 times faster) to ex­plore x, y and the off-mo­men­tum phase space.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB041  
About • paper received ※ 09 May 2021       paper accepted ※ 26 May 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXC06 Visualizing Lattice Dynamic Behavior by Acquiring a Single Time-Resolved MeV 1311
 
  • X. Yang, T.V. Shaftan, V.V. Smaluk, J. Tao, L. Wu, Y. Zhu
    BNL, Upton, New York, USA
  • W. Wan
    ShanghaiTech University, Shanghai, People’s Republic of China
 
  We ex­plore the pos­si­bil­ity of vi­su­al­iz­ing the lat­tice dy­namic be­hav­ior by ac­quir­ing a sin­gle time-re­solved MeV UED image. Con­ven­tion­ally, mul­ti­ple UED shots with vary­ing time de­lays are needed to map out the en­tire dy­namic process. The mea­sure­ment pre­ci­sion is lim­ited by the tim­ing jit­ter be­tween the pulses of laser pump and UED probe. We show that, by con­vert­ing the lon­gi­tu­di­nal time of an elec­tron bunch to the trans­verse po­si­tion of a Bragg peak on the de­tec­tor, one can ob­tain the full lat­tice dy­namic process in a sin­gle elec­tron pulse. We pro­pose a novel de­sign of a time-re­solved UED with the ca­pa­bil­ity of cap­tur­ing a wide range of dy­namic fea­tures in a sin­gle dif­frac­tion image. The work pre­sented here is not only an ex­ten­sion of the ul­tra­short-pulse pump/long-pulse probe scheme being used in tran­sient spec­troscopy stud­ies for decades but also ad­vances the ca­pa­bil­i­ties of MeV UED for fu­ture ap­pli­ca­tions with tun­able elec­tron probe pro­file and de­tect­ing time range with fem­tosec­ond res­o­lu­tion. Fur­ther­more, we pre­sent nu­mer­i­cal sim­u­la­tions il­lus­trat­ing the ca­pa­bil­ity of ac­quir­ing a sin­gle time-re­solved dif­frac­tion image based on the case-by-case stud­ies of lat­tice dy­namic be­hav­ior.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUXC06  
About • paper received ※ 14 May 2021       paper accepted ※ 28 July 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB223 Design of Double- and Multi-Bend Achromat Lattices with Large Dynamic Aperture and Approximate Invariants 1945
 
  • Y. Li, R.S. Rainer, V.V. Smaluk
    BNL, Upton, New York, USA
  • K. Hwang, C.E. Mitchell, R.D. Ryne
    LBNL, Berkeley, California, USA
 
  Funding: Funded by U.S. Department of Energy (DOE) under Contract No. DE-SC0012704 (BNL) and DE-AC02-05CH11231 (LBNL), U.S. DOE Early Career Research Program under the Office of High Energy Physics.
A nu­mer­i­cal method to de­sign non­lin­ear dou­ble- and multi-bend achro­mat (DBA and MBA) lat­tices with ap­prox­i­mate in­vari­ants of mo­tion is de­scribed. The search for such non­lin­ear lat­tices is mo­ti­vated by Fer­mi­lab’s In­te­grable Op­tics Test Ac­cel­er­a­tor (IOTA), whose de­sign is based on an in­te­grable Hamil­ton­ian sys­tem with two in­vari­ants of mo­tion. While it may not be pos­si­ble to de­sign an achro­matic lat­tice for a ded­i­cated syn­chro­tron light source stor­age ring with one or more exact in­vari­ants of mo­tion, it is pos­si­ble to tune the sex­tupoles and oc­tupoles in ex­ist­ing DBA and MBA lat­tices to pro­duce ap­prox­i­mate in­vari­ants. In our pro­ce­dure, the lat­tice is tuned while min­i­miz­ing the turn-by-turn fluc­tu­a­tions of the Courant-Sny­der ac­tions Jx and Jy at sev­eral dis­tinct am­pli­tudes, while si­mul­ta­ne­ously min­i­miz­ing dif­fu­sion of the on-en­ergy be­ta­tron tunes. The re­sult­ing lat­tices share some im­por­tant fea­tures with in­te­grable ones, such as a large dy­namic aper­ture, tra­jec­to­ries con­fined to in­vari­ant tori, ro­bust­ness to res­o­nances and er­rors, and a large am­pli­tude-de­pen­dent tune-spread.
 
poster icon Poster TUPAB223 [2.392 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB223  
About • paper received ※ 10 May 2021       paper accepted ※ 15 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB227 Simultaneous Compensation of Phase and Amplitude Dependent Geometrical Resonances Using Octupoles 1960
 
  • F. Plassard, Y. Hidaka, Y. Li, T.V. Shaftan, V.V. Smaluk, G.M. Wang
    BNL, Upton, New York, USA
 
  As the new gen­er­a­tion of light sources are push­ing to­ward dif­frac­tion lim­ited stor­age rings with ul­tra-low emit­tance beams, non­lin­ear beam dy­nam­ics be­come in­creas­ingly dif­fi­cult to con­trol. It is a com­mon prac­tice for mod­ern de­signs to use a sex­tu­pole scheme that al­lows si­mul­ta­ne­ous cor­rec­tion of nat­ural chro­matic­ity and en­ergy in­de­pen­dent, or geo­met­ri­cal, sex­tupo­lar res­o­nances. How­ever, the re­main­ing higher order terms aris­ing from the cross talks of the sex­tu­pole fam­i­lies set a strong lim­i­ta­tion on the achiev­able dy­namic aper­ture. This paper pre­sents a sim­u­la­tion-based recipe to use oc­tupoles to­gether with this sex­tu­pole scheme to pro­vide si­mul­ta­ne­ous self-com­pen­sa­tion of lin­ear am­pli­tude de­pen­dent tune shift to­gether with phase-de­pen­dent oc­tupo­lar and higher order geo­met­ri­cal res­o­nant dri­ving terms. The cor­rec­tion method was built based on ob­ser­va­tions made on a sim­ple FODO model, then ap­plied to a re­al­is­tic low emit­tance lat­tice, de­signed in the frame­work of the up­grade of the Na­tional Syn­chro­tron Light Source II (NSLS-II).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB227  
About • paper received ※ 19 May 2021       paper accepted ※ 23 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 Design Status Update of the Electron-Ion Collider 2585
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, M. Mapes, D. Marx, G.T. McIntyre, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, B. Podobedov, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, S. Verdú-Andrés, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • S.V. Benson, J.M. Grames, F. Lin, T.J. Michalski, V.S. Morozov, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K.E. Deitrick, C.M. Gulliford, G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The de­sign of the elec­tron-ion col­lider EIC to be con­structed at Brookhaven Na­tional Lab­o­ra­tory has been con­tin­u­ously evolv­ing to­wards a re­al­is­tic and ro­bust de­sign that meets all the re­quire­ments set forth by the nu­clear physics com­mu­nity in the White Paper. Over the past year ac­tiv­i­ties have been fo­cused on ma­tur­ing the de­sign, and on de­vel­op­ing al­ter­na­tives to mit­i­gate risk. These in­clude im­prove­ments of the in­ter­ac­tion re­gion de­sign as well as mod­i­fi­ca­tions of the hadron ring vac­uum sys­tem to ac­com­mo­date the high av­er­age and peak beam cur­rents. Beam dy­nam­ics stud­ies have been per­formed to de­ter­mine and op­ti­mize the dy­namic aper­ture in the two col­lider rings and the beam-beam per­for­mance. We will pre­sent the EIC de­sign with a focus on re­cent de­vel­op­ments.
 
poster icon Poster WEPAB005 [2.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB239 Effect of Chromaticity and Feedback on Transverse Head-Tail Instability 3189
 
  • V.V. Smaluk, G. Bassi, A. Blednykh, A. Khan
    BNL, Upton, New York, USA
 
  Funding: This work was supported by the US Department of Energy under contract DE-SC0012704.
The head-tail in­sta­bil­ity caused by the beam in­ter­ac­tion with short-range wake­fields is a major lim­i­ta­tion for the sin­gle-bunch beam in­ten­sity in cir­cu­lar ac­cel­er­a­tors. The com­bined ef­fect of the trans­verse feed­back sys­tems and chro­matic­ity sup­press­ing the in­sta­bil­ity is dis­cussed. The­o­ret­i­cal and ex­per­i­men­tal stud­ies of the head-tail in­sta­bil­ity and meth­ods of its mit­i­ga­tion are re­viewed. Re­sults of ex­per­i­men­tal stud­ies of the trans­verse mode cou­pling car­ried out at NSLS-II are com­pared with the the­o­ret­i­cal model and nu­mer­i­cal sim­u­la­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB239  
About • paper received ※ 19 May 2021       paper accepted ※ 24 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB240 Combined Effect of IBS and Impedance on the Longitudinal Beam Dynamics 4274
 
  • A. Blednykh
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • B. Bacha, G. Bassi, T.V. Shaftan, V.V. Smaluk
    BNL, Upton, New York, USA
  • M. Borland, R.R. Lindberg
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The hor­i­zon­tal/ver­ti­cal emit­tances, the bunch length, and the en­ergy spread in­crease have been stud­ied in the NSLS-II as a func­tion of a sin­gle bunch cur­rent. The mo­not­o­nic growth of the hor­i­zon­tal emit­tance de­pen­dence and the en­ergy spread de­pen­dence on the sin­gle bunch cur­rent below the mi­crowave in­sta­bil­ity thresh­old can be ex­plained by the In­tra­beam Scat­ter­ing Ef­fect (IBS). The IBS ef­fect re­sults in an in­crease in the bunch length and the mi­crowave in­sta­bil­ity thresh­olds. It was ob­served ex­per­i­men­tally by vary­ing the ver­ti­cal emit­tance. To com­pare with ex­per­i­men­tal data, par­ti­cle track­ing sim­u­la­tions have been per­formed with the EL­E­GANT code in­clud­ing both IBS and the total lon­gi­tu­di­nal wake­field cal­cu­lated from the 3D elec­tro­mag­netic code GdfidL. The same par­ti­cle track­ing sim­u­la­tions have also been ap­plied for the APS-U pro­ject, where IBS is pre­dicted to pro­duce only a mar­ginal ef­fect.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB240  
About • paper received ※ 20 May 2021       paper accepted ※ 05 July 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)