Author: Ratzinger, U.
Paper Title Page
MOPAB192 LILac Energy Upgrade to 13 MeV 651
 
  • B. Koubek, S. Altürk, M. Busch, H. Höltermann, J.D. Kaiser, H. Podlech, U. Ratzinger, M. Schuett, M. Schwarz, W. Schweizer, D. Strehl, R. Tiede, C. Trageser
    BEVATECH, Frankfurt, Germany
  • A. Brunzel, P. Nonn, H. Schlarb
    DESY, Hamburg, Germany
  • A.V. Butenko, D.E. Donets, B.V. Golovenskiy, A. Govorov, K.A. Levterov, D.A. Lyuosev, A.A. Martynov, V.A. Monchinsky, D.O. Ponkin, K.V. Shevchenko, I.V. Shirikov, E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  In the frame of the NICA (Nu­clotron-based Ion Col­lider fA­cil­ity) ion col­lider up­grade a new light ion LINAC for pro­tons and ions will be built in col­lab­o­ra­tion be­tween JINR and BE­VAT­ECH GmbH. While ions with a mass-to-charge ratio up to 3 will be fed into the NU­CLOTRON ring with an en­ergy of 7 MeV/u, pro­tons are sup­posed to be ac­cel­er­ated up to an en­ergy of 13 MeV using a third IH struc­ture. This en­ergy up­grade com­prises a third IH struc­ture, a dual-use De­buncher cav­ity as well as an ex­ten­sion of the LLRF con­trol sys­tem built on Mi­croTCA tech­nol­ogy.  
poster icon Poster MOPAB192 [4.914 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB192  
About • paper received ※ 11 May 2021       paper accepted ※ 31 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB202 Thermal Analysis of a Compact Split-Coaxial CW RFQ for the IsoDAR RFQ-DIP 3097
 
  • D. Koser, J.M. Conrad, D. Winklehner
    MIT, Cambridge, Massachusetts, USA
  • H. Podlech, U. Ratzinger, M. Schuett
    BEVATECH, Frankfurt, Germany
 
  The RFQ di­rect in­jec­tion pro­ject (RFQ-DIP) for the neu­trino physics ex­per­i­ment Iso­DAR aims at an ef­fi­cient in­jec­tion of a high-cur­rent H2+ beam into the ded­i­cated 60 MeV dri­ver cy­clotron. There­fore, it is in­tended to use a com­pact 32.8 MHz RFQ struc­ture of the split-coax­ial type as a pre-buncher. To de­ter­mine the ther­mal elon­ga­tion of the 1.4 m long elec­trode rods as well as the ther­mal fre­quency de­tun­ing of the RF struc­ture at a max­i­mum nom­i­nal power load of 3.6 kW, an ex­ten­sive ther­mal and struc­tural me­chan­i­cal analy­sis using COM­SOL Mul­ti­physics was con­ducted. The water heat­ing along the cool­ing chan­nels as well as the prop­er­ties of heat trans­fer from the cop­per struc­ture to the cool­ing water were taken into ac­count, which re­quired CFD sim­u­la­tions of the cool­ing water flow in the tur­bu­lent regime. Here we pre­sent the meth­ods and re­sults of the so­phis­ti­cated ther­mal and struc­tural me­chan­i­cal sim­u­la­tions using COM­SOL and pro­vide a com­par­i­son to more sim­plis­tic sim­u­la­tions con­ducted with CST Stu­dio Suite.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB202  
About • paper received ※ 20 May 2021       paper accepted ※ 01 July 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB167 Technical Design of an RFQ Injector for the IsoDAR Cyclotron 4075
 
  • H. Höltermann, D. Koser, B. Koubek, H. Podlech, U. Ratzinger, M. Schuett, M. Syha
    BEVATECH, Frankfurt, Germany
  • J.M. Conrad, J. Smolsky, L.H. Waites, D. Winklehner
    MIT, Cambridge, Massachusetts, USA
 
  For the Iso­DAR (Iso­tope De­cay-At-Rest) ex­per­i­ment, a high in­ten­sity (10 mA CW) pri­mary pro­ton beam is needed. To gen­er­ate this beam, H2+ is ac­cel­er­ated in a cy­clotron and stripped into pro­tons after ex­trac­tion. An RFQ, par­tially em­bed­ded in the cy­clotron yoke, will be used to bunch and ax­i­ally in­ject H2+ ions into the main ac­cel­er­a­tor. The strong RFQ bunch­ing ca­pa­bil­i­ties will be used to op­ti­mize the over­all in­jec­tion ef­fi­ciency. To keep the setup com­pact the dis­tance be­tween the ion source and RFQ can be kept very short as well. In this paper, we de­scribe the tech­ni­cal de­sign of the RFQ. We focus on two crit­i­cal as­pects: 1. The use of a split-coax­ial struc­ture, ne­ces­si­tated by the low fre­quency of 32.8 MHz (match­ing the cy­clotron RF) and the de­sired small tank di­am­e­ter; 2. The high cur­rent, CW op­er­a­tion, re­quir­ing a good cool­ing con­cept for the RFQ tank and vanes.  
poster icon Poster THPAB167 [2.162 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB167  
About • paper received ※ 14 May 2021       paper accepted ※ 27 July 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB194 First 3D Printed IH-Type Linac Structure - Proof-of-Concept for Additive Manufacturing of Linac rf Cavities 654
 
  • H. Hähnel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Ad­di­tive man­u­fac­tur­ing (or "3D print­ing") has be­come a pow­er­ful tool for rapid pro­to­typ­ing and man­u­fac­tur­ing of com­plex geome­tries. As tech­nol­ogy is evolv­ing, the qual­ity and ac­cu­racy of parts man­u­fac­tured this way is ever im­prov­ing. Es­pe­cially in­ter­est­ing for the world of par­ti­cle ac­cel­er­a­tors is the process of 3D print­ing of stain­less steel (and cop­per) parts. We pre­sent the first fully func­tional IH-type drift tube struc­ture man­u­fac­tured by metal 3D print­ing. A 433 MHz pro­to­type cav­ity has been con­structed to act as a proof-of-con­cept for the tech­nol­ogy. The cav­ity is de­signed to be UHV ca­pa­ble and in­cludes cool­ing chan­nels reach­ing into the stems of the DTL struc­ture. We pre­sent the first ex­per­i­men­tal re­sults for this pro­to­type.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB194  
About • paper received ※ 18 May 2021       paper accepted ※ 01 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB282 Development of a Multi-Camera System for Non-Invasive Intense Ion Beam Investigations 895
 
  • A. Ateş, H. Hähnel, U. Ratzinger, K. Volk, C. Wagner
    IAP, Frankfurt am Main, Germany
 
  The con­tin­ued pop­u­lar­ity of minia­tur­ized cam­eras in­te­grated into smart­phones is lead­ing to fur­ther re­search for more ad­vanced CMOS cam­era sen­sors. This made CMOS tech­nol­ogy even su­pe­rior to sci­en­tific CCD cam­eras. Due to the lower power con­sump­tion and high flex­i­bil­ity, a mul­ti­cam­era sys­tem can be de­vel­oped more ef­fec­tively. At the In­sti­tute of Ap­plied Physics at Goethe Uni­ver­sity Frank­furt (IAP) a pro­to­type of a beam in­duced rest gas flu­o­res­cence mon­i­tor (BIF) was de­vel­oped and tested suc­cess­fully. The BIF con­sists of x and y sin­gle board cam­eras in­te­grated into the vac­uum cham­ber. A multi-cam­era sys­tem was in­stalled in the LEBT area of the FRANZ pro­ject at the IAP within the first di­ag­nos­tic cham­ber. This sys­tem con­sists of six cam­eras. With this equip­ment it is pos­si­ble to in­ves­ti­gate the beam along a 484 mm path in x and y di­rec­tion. The de­vel­op­ments on the re­con­struc­tion and image pro­cess­ing meth­ods are in progress.  
poster icon Poster MOPAB282 [1.139 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB282  
About • paper received ※ 12 May 2021       paper accepted ※ 08 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB329 Operations of Copper Cavities at Cryogenic Temperatures 1020
 
  • H. Wang, U. Ratzinger, M. Schuett
    IAP, Frankfurt am Main, Germany
 
  How the anom­alous skin ef­fect by cop­per af­fects the ef­fi­ciency of cop­per- cav­i­ties will be stud­ied in the ex­per­i­ment, es­pe­cially at lower tem­per­a­tures. The ac­cu­rate qual­ity fac­tor Q and res­o­nant fre­quency of three coax­ial cav­i­ties will be mea­sured over the tem­per­a­ture range from 300 to 22 K. The three coax­ial cav­i­ties have the same struc­ture, but dif­fer­ent lengths, which cor­re­spond to res­o­nant fre­quen­cies: around 100 MHz, 220 MHz and 340 MHz. The mo­ti­va­tion is to check the fea­si­bil­ity of an ef­fi­cient pulsed, liq­uid ni­tro­gen cooled ion linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB329  
About • paper received ※ 19 May 2021       paper accepted ※ 07 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB356 Electron Beam Driven Cavities 2342
 
  • M. Schuett, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  State of the art high power feeder for RF cav­i­ties used as ac­cel­er­a­tors gen­er­ally re­quire RF am­pli­fiers con­sist­ing of a vac­uum tube, such as a kly­stron or Grid Tubes. In ad­di­tion, a num­ber of cost in­ten­sive RF aux­il­iary de­vices are needed: Mod­u­la­tor, wave­guides, cir­cu­la­tor, power dump and cou­plers. The equip­ment re­quires sig­nif­i­cant floor space within the linac build­ing. Al­ter­na­tively, we pro­pose a di­rect dri­ven sys­tem. Aμbunched elec­tron beam is in­jected di­rectly into the cav­ity. A high per­veance bunched elec­tron beam can be gen­er­ated by a stan­dard elec­tron gun com­bined with a de­flect­ing beam chop­per*, an off-the-shelf IOT or kly­stron, re­spec­tively. The pulse rate is de­ter­mined by the res­o­nance fre­quency of the cav­ity. The res­onator hereby acts like the out­put cav­ity of a kly­stron: Within its prop­a­ga­tion through the cav­ity the beam is de­cel­er­ated in­creas­ing the stored en­ergy of the ac­cel­er­a­tor. We pre­sent 3D par­ti­cle PIC sim­u­la­tions eval­u­at­ing the geom­e­try and beam prop­er­ties in order to op­ti­mize the cou­pling ef­fi­ciency and cav­ity ex­ci­ta­tion of state-of-art CH par­ti­cle ac­cel­er­a­tor struc­tures.
* S. Setzer, T. Weiland and U. Ratzinger, A Chopped Electron Beam Driver for H-Type Cavities, 20th ‘International Linac Conference, Monterey, California, August 21-25, 2000, pp. 1001-1003
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB356  
About • paper received ※ 19 May 2021       paper accepted ※ 21 June 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB176 Acceleration of He+ Beams for Injection Into NICA Booster During its First Run 3016
 
  • K.A. Levterov, V.P. Akimov, D.S. Letkin, D.O. Leushin, V.V. Mialkovskiy
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • A.M. Bazanov, A.V. Butenko, D.E. Donets, D. Egorov, A.R. Galimov, B.V. Golovenskiy, A. Govorov, V.V. Kobets, A.D. Kovalenko, D.A. Lyuosev, A.A. Martynov, V.A. Monchinsky, D.O. Ponkin, I.V. Shirikov, A.O. Sidorin, E. Syresin, G.V. Trubnikov, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
  • H. Höltermann, H. Podlech
    BEVATECH, Frankfurt, Germany
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  Heavy Ion Lin­ear Ac­cel­er­a­tor (HILAC) is de­signed to ac­cel­er­ate the heavy ions with ratio A/Z<=6.25 pro­duced by ESIS ion source up to the 3.2 MeV for the in­jec­tion into su­per­con­duct­ing syn­chro­tron (SC) Booster. HILAC was com­mis­sioned in 2018 using the car­bon beams from Laser Ion Source (LIS). The pro­ject out­put en­ergy was ver­i­fied. Trans­mis­sion could be es­ti­mated only for DTL struc­ture be­cause of the pres­ence at the RFQ input the mix­ture of ions with dif­fer­ent charge states ex­tracted from laser-plasma. To es­ti­mate trans­mis­sion through the whole linac the ion source pro­duc­ing the only species He+ was de­signed. The beams of He+ ions were used for the first run of SC Booster. The de­sign of the he­lium ion source and re­sults of the He+ beam ac­cel­er­a­tion and in­jec­tion are de­scribed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB176  
About • paper received ※ 19 May 2021       paper accepted ※ 11 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)