MOZZPLM —  Contributed Orals: Hadron Accelerators   (20-May-19   15:00—16:00)
Chair: T. Koseki, KEK, Ibaraki, Japan
Paper Title Page
MOZZPLM1 Beam Commissioning of the Demonstrator Setup for the Superconducting Continuous Wave HIM/GSI-Linac 33
 
  • M. Miski-Oglu, K. Aulenbacher, V. Gettmann, T. Kürzeder
    HIM, Mainz, Germany
  • K. Aulenbacher, F.D. Dziuba
    IKP, Mainz, Germany
  • W.A. Barth, C. Burandt, V. Gettmann, M. Heilmann, T. Kürzeder, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
  • M. Basten, M. Busch, T. Conrad, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  During successful beam commissioning of the superconducting 15-gap Crossbar H-mode cavity at GSI Helmholtzzentrum für Schwerionenforschung heavy ions up to the design beam energy have been accelerated. The design acceleration gain of 3.5 MeV inside a length of less than 70 cm has been reached with full transmission for heavy ion beams of up to 1.5 particle mueA. The measured beam parameters confirm sufficient beam quality. The machine beam commissioning is a major milestone of the R&D for the superconducting heavy ion continuous wave linear accelerator HELIAC of Helmholtz Institute Mainz (HIM) and GSI developed in collaboration with IAP Goethe-University Frankfurt. The next step is the procurement and commissioning of so called ’Advanced Demonstrator’ - the first of series cryo module for the entire accelerator HELIAC. Results of further Demonstrator beam tests, as well as the status of the Advanced demonstrator project will be reported.  
slides icon Slides MOZZPLM1 [3.088 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLM1  
About • paper received ※ 29 April 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZZPLM2 A Bunch Structure Measurement of Muons Accelerated by RFQ Using a Longitudinal Beam-Profile Monitor With High Time Resolution 37
SUSPFO046   use link to see paper's listing under its alternate paper code  
 
  • Y. Sue, K. Inami
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • K. Futatsukawa, N. Kawamura, T. Mibe, Y. Miyake, M. Otani, T. Yamazaki
    KEK, Ibaraki, Japan
  • K. Hasegawa, R. Kitamura, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Iijima
    KMI, Nagoya, AIchi Prefecture, Japan
  • H. Iinuma, Y. Nakazawa
    Ibaraki University, Hitachi, Ibaraki, Japan
  • K. Ishida
    RIKEN Nishina Center, Wako, Japan
  • Y. Kondo
    JAEA, Ibaraki-ken, Japan
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Takeuchi
    Kyoto ICR, Uji, Kyoto, Japan
  • T. Ushizawa
    Sokendai, Ibaraki, Japan
  • H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
  • M. Yotsuzuka
    Nagoya University, Nagoya, Japan
 
  Funding: This work is supported by JSPS KAKENHI Grant Numbers JP15H03666, JP15H05742, JP16H03987, JP16J07784, JP18H03707 and JP18H05226.
J-PARC E34 experiment intends to measure the anomalous magnetic moment and electric dipole moment of muon precisely by a different way from the previous experiment. In this experiment, a low-emittance muon beam is provided using the muons with the thermal energy and the four-stage linac. The demonstration of the first muon RF acceleration with an RFQ linac was conducted and the transverse profile of the accelerated muons was measured last year. As one of the remaining issues for the beam-diagnostic system, the longitudinal beam profile after the RFQ should be measured to match the profile to the designed acceptance of the subsequent accelerator. For this purpose, the new longitudinal beam monitor using the micro-channel plate is under development. The time resolution aims to be around 30 to 40 ps corresponding to 1 % of a period of an operation frequency of the accelerator, which is 324 MHz. On November 2018, the bunch structure of accelerated muons of 89 keV with the RFQ was measured using this monitor at the J-PARC MLF. The latest analysis result of this measurement will be reported in this poster.
 
slides icon Slides MOZZPLM2 [2.618 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLM2  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZZPLM3 Commissioning and First Results of the Fermilab Muon Campus 41
 
  • D. Stratakis, B.E. Drendel, J.P. Morgan, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • N.S. Froemming
    CENPA, Seattle, Washington, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
 
  In the following years, the Fermilab Muon Campus will deliver highly polarized muon beams to the Muon g-2 Experiment. The Muon Campus contains a target section wherein secondaries are produced, the delivery ring which separates the muons from the rest of the beam and a sequence of beamlines that transports them to the Muon g-2 storage ring. Here, we report the first results of beam measurements at the Muon Campus with emphasis on the key achievements that have contributed to the successful beam delivery to the Muon g-2 Experiment. These achievements include the production of an intense secondary beam from the target, it’s transport over 2 km, the successful monitoring of muons from the available diagnostics and the development of techniques for measuring the transverse optics. We also present detailed comparisons between experimental data and simulation and discuss the similarities and differences observed.  
slides icon Slides MOZZPLM3 [2.846 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLM3  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)