

Commissioning and First Results of the Fermilab Muon Campus

Diktys Stratakis IPAC 2019, Melbourne, Australia 20 May 2019

Outline

- Overview of the Fermilab Muon Campus
- Commissioning experience of the Muon Campus
- Operational experience of the Muon Campus
- Comparison between data, simulation and theory
- Strategies to improve performance
- Summary

Motivation

- In the next decade Fermilab will host two world-class precision science experiments:
 - The Muon g-2 experiment will determine with high precision the anomalous magnetic moment of the muon.
 - The Mu2e experiment will improve the sensitivity on the search for a neutrinoless conversion of a muon to an electron.
- A dedicated accelerator facility to provide beams to both experiments has been designed and constructed at Fermilab
- The Muon g-2 experiment will precede the Mu2e experiment
- In this talk, I will discuss the commissioning and operational effort of this accelerator facility for the Muon g-2 Experiment

Fermilab Muon g-2 Experiment

- Goal
 - Measure the muon anomalous magnetic moment (g-2) with 0.14 ppm uncertainty - a fourfold improvement of the BNL measurement (0.54 ppm)
- Approach
 - Circulate polarized muons in a uniform magnetic field and measure the precession frequency
 - 3.1 GeV/c muons to simplify Thomas-BMT 0 equation: $\vec{\omega}_a = \frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right]$
- Requirement
 - Requires delivery of 1.4×10^{14} muons in the ring which is x20 the statistics of the BNL experiment

See talk: Syphers, WEYYPLS1

Muon Campus layout

• The delivered muon beam is free of protons and pions, which created a major background in the BNL experiment

Milestones of the Muon Campus

- Started accelerator installation in May 2013
- Started beam commissioning in Apr. 2017
- Stored the first muons in the storage ring in May 2017
- Completed commissioning phase and begun normal operations for the Muon g-2 Experiment in Dec. 2017
- Completed Run 1 where the Muon g-2 Experiment has collected 2x the BNL statistics in Jul 2018
- Started Run 2 in Mar. 2019 and we now routinely collect 1x BNL statistics per month

Target station

- Includes a target, Li lens, collimator, pulsed magnet & dump
- Flexible quad triplet upstream to adjust primary beam size

Primary beam on production target

Bunch coalescing of incoming beam via four 2.5 MHz cavities shapes bunches to the desired length and intensity

0.6

5≥ ⊢ermilab

Performance sensitive to beam spot size on target

5/20/2019 Diktys Stratakis | IPAC 2019 8

Muon capture and transport lines (M2-M3 lines)

- Beamlines have a high magnet density with large aperture quadrupoles to maximize capture of pions and muons
- Mostly muons from forward decays are accepted and the polarization is 90%
- 70% of the pions are expected to decay along the M2-M3 lines

Beam performance along the M2-M3 lines

• Measured intensity at the end of the line matches simulation

🛟 Fermilab

Delivery Ring (DR)

• DR is 505 m long and contains 57 FODO cells with 66 dipoles

Proton removal

- Muon and proton bunches separate by 75 ns per turn
- Kicker rise ~180 ns; protons removed during turn 4
- Remaining beam extracted to g-2 after turn 4
- Commissioned in Dec 2017

partic

Delivery Ring simulated performance

- Secondary protons dominate. Pions <1% after three turns
- A considerable amount of "target born" e⁺ is present which needs to be determined in order to evaluate performance

🚰 Fermilab

Measuring positron rates

- Protons were extracted at turn 4; increased to 100 turns to find the e⁺ rate
- After 100 turns, 31% of e⁺ are lost due to synchrotron radiation
 - Turn 4: $N_e + N_\mu = 5.69 \times 10^5$

- Turn 100:
$$\frac{69}{100}N_e + \frac{7}{100}N_\mu = 1.94 \times 10^5$$

- $-\mu^+ = 57\%$ and $e^+ = 43\%$
- Independent test with a variable thickness Pb block gave same result!

 μ^+/e^+ beam

Data ratio

🛟 Fermilab

Transmission of muons along the Delivery Ring

- We measured the muons stored inside the g-2 storage ring as a function of the DR turn number
- Measured muon life time was $\tau = (60 \pm 1) \mu s$ instead of 64 μs . This suggests unwanted beam losses in the DR

🛠 Fermilab

Muon transport to g-2 line (M4-M5 lines)

• 127 m long and transports beam from the DR to the g-2 ring

Optics measurements along the M4-M5 lines

• We measured the beam optics along several locations. Measured emittance agrees well with design parameters.

Transmission along the M4-M5 lines

- Good news:
 - Simulation and data show 90% transmission along the M4-M5
 - Measured mu+/e+ ratio (57/43); tracking (60/40)
- More attention needed:
 - Transmission along the Muon
 Campus is 60% of the design
 - Partly from some simplifications of the simulation model but also from unwanted losses during injection and circulation in the DR

🚰 Fermilab

• The Muon Campus delivers 1 x the BNL statistics per month

Performance enhancement with passive absorbers

• The g-2 ring accepts only a fraction of the delivered muons

Proof-of-principle test with a polyethylene wedge

• Proof-of-principle experiment carried out. Demonstrated a gain up to 8% in stored muons with a polyethylene wedge.

AP-0 Target Hall M2 Line M3 Line

Mu2e

Mu2e

Summary

- An accelerator facility to provide beams to both g-2 and Mu2e experiments has been designed and constructed at Fermilab
- The facility has been commissioned and is now in the operation phase for the Muon g-2 Experiment
- It currently delivers roughly 1x the BNL statistics per month.
 Experiment will complete at 20x the BNL statistics
- A plan for mitigation of the observed beam losses during injection and circulation in the DR is underway
 - Improved diagnostics and instrumentation installed to aid analysis
- A passive wedge system has been designed and commissioned for improving performance. First test showed a up to 8% improvement on stored muons

