MC8: Applications of Accelerators, Technology Transfer and Industrial Relations
U07 Industrial Applications
Paper Title Page
THPMP012 New Industrial Application Beamline for the cERL in KEK 3475
 
  • Y. Morikawa, K. Haga, M. Hagiwara, K. Harada, N. Higashi, T. Honda, Y. Honda, M. Hosumi, Y. Kamiya, R. Kato, H. Kawata, Y. Kobayashi, H. Matsumura, C. Mitsuda, T. Miura, T. Miyajima, S. Nagahashi, N. Nakamura, K.N. Nigorikawa, T. Nogami, T. Obina, H. Sagehashi, H. Sakai, M. Shimada, M. Tadano, R. Takai, H. Takaki, O.A. Tanaka, Y. Tanimoto, A. Toyoda, T. Uchiyama, A. Ueda, K. Umemori, M. Yamamoto
    KEK, Ibaraki, Japan
 
  The new beam line for the industrial applications is constructed at the cERL (compact Energy Recovery LINAC) in KEK. In these applications, only north straight sections of cERL consisting of injector and main LINAC will be used. The test for the radio isotope production and electron beam irradiation for the materials are firstly planned with very small beam current without energy recovery.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP012  
About • paper received ※ 11 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP013 Challenges Towards Industrialization of the ERL-FEL Light Source for EUV Lithography 3478
 
  • N. Nakamura, E. Kako, R. Kato, H. Kawata, T. Miyajima, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  EUV Lithography is going to HVM (high volume manufacturing) stage with 250-W-class laser-produced plasma sources and it is important to develop a new-type EUV light source to meet future demand for higher power. Energy-recovery linac based free-electron lasers (ERL-FELs) are possible candidates of a high-power EUV light source that can distribute 1 kW power to multiple scanners simultaneously. In Japan, an ERL-FEL based EUV light source has been designed using available technologies without much development to demonstrate generation of EUV power more than 10 kW and the EUV-FEL Light Source Study Group for Industrialization has been established since 2015 to realize industrialization of the light source and the related items. For industrialization, high availability is essential as well as high power and reduction of the light source size is also required. In this paper, we will report an overview of the designed ERL-FEL light source for EUV lithography and some activities for the industrialization and describe considerations and developments for obtaining high availability and size reduction of the light source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP013  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP021 X-ray Dose Rate of 6/4 MeV European S-band Linac Structure for Industrial Application at RTX 3494
 
  • P. Buaphad, I.G. Jeong, Y. Joo, H.R. Lee
    University of Science and Technology of Korea (UST), Daejeon, Republic of Korea
  • I.G. Jeong, J.Y. Lee
    Korea Atomic Energy Research Institute (KAERI), Daejeon, Republic of Korea
  • Y. Joo, Y. Kim, H.R. Lee
    KAERI, Daejon, Republic of Korea
  • H.D. Park, S. Song
    RTX, Daejeon, Republic of Korea
 
  Recently, RTX has been developing a 6/4 MeV European S-band (= 2998 MHz) industrial linac by using a magnetron with a low RF power of about 3 MW for container inspection system (CIS). Its accelerating structure is designed to operate in π/2 mode by coupling 6 accelerating cells together through 5 side-coupled cells. In CIS, high dose rate X-rays from MeV-energy electron beam has been used to detect the possible presence of contrabands in cargoes or truck containers. To determine a dose rate output, the X-ray dose rate can be simulated by using FLUKA Monte Carlo simulation. The aim of this work was to study the effects of thickness of X-ray target on dose rate as well as X-ray dose map at 1.0 m away from the X-ray target. This study gives the thickness of target in which the dose rate can be highest and electron beam current can be lowest.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP021  
About • paper received ※ 24 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP025 Modern Heavy Ion Based Test Facilities For Spacecrafts Electronics Qualification 3497
 
  • P.A. Chubunov
    ISDE, Moscow, Russia
  • V.S. Anashin
    United Rocket and Space Corporation, Institute of Space Device Engineering, Moscow, Russia
  • I.V. Kalagin, S.V. Mitrofanov, V.A. Skuratov
    JINR, Dubna, Moscow Region, Russia
 
  All spacecraft electronics should be subject to radiation hardness qualifications. For modern semiconductor technologies, individual high-energy particles of outer space are the greatest danger, causing upsets and failures in satellite equipment. For ground tests at single event effects, heavy ion-based modeling facilities are used. The report describes the test benches used for testing space-based electronics, created on the basis of the U-400, U-400M ion accelerators in the FLNR JINR (Dubna, Russia) at the request of ISDE (Moscow, Russia).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP025  
About • paper received ※ 18 May 2019       paper accepted ※ 26 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP036 Beam Dynamics of Novel Hybrid Ion Mass Analysers 3522
 
  • R.B. Appleby, T. Rose
    UMAN, Manchester, United Kingdom
  • M.R. Green, P. Nixon, K. Richardson
    Waters Corporation, Manchester, United Kingdom
 
  Fourier transform (FT) mass spectrometers achieve high resolution using relatively long transient times by trapping ions and measuring the frequency of their motion (inductively) inside an electrostatic potential. By contrast, time-of-flight (ToF) mass spectrometers measure the time of flight between an initiation pulse and contact with a destructive detector positioned on a plane of space focus after flying along a predetermined route. These devices have relatively short flight times and, generally, lower resolution. A class of hybrid analysers have been proposed and studied, utilising a quadro-logarithmic potential to reflect ions multiple times past an inductive detector, with the potential for the short transient of ToF devices - and the high resolution of FT devices. In this paper we compute the ion dynamics inside such devices, tracking bunches of ions and studying induced signals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP036  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)