MC4: Hadron Accelerators
A09 Muon Accelerators and Neutrino Factories
Paper Title Page
MOZZPLM2 A Bunch Structure Measurement of Muons Accelerated by RFQ Using a Longitudinal Beam-Profile Monitor With High Time Resolution 37
SUSPFO046   use link to see paper's listing under its alternate paper code  
 
  • Y. Sue, K. Inami
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • K. Futatsukawa, N. Kawamura, T. Mibe, Y. Miyake, M. Otani, T. Yamazaki
    KEK, Ibaraki, Japan
  • K. Hasegawa, R. Kitamura, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Iijima
    KMI, Nagoya, AIchi Prefecture, Japan
  • H. Iinuma, Y. Nakazawa
    Ibaraki University, Hitachi, Ibaraki, Japan
  • K. Ishida
    RIKEN Nishina Center, Wako, Japan
  • Y. Kondo
    JAEA, Ibaraki-ken, Japan
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Takeuchi
    Kyoto ICR, Uji, Kyoto, Japan
  • T. Ushizawa
    Sokendai, Ibaraki, Japan
  • H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
  • M. Yotsuzuka
    Nagoya University, Nagoya, Japan
 
  Funding: This work is supported by JSPS KAKENHI Grant Numbers JP15H03666, JP15H05742, JP16H03987, JP16J07784, JP18H03707 and JP18H05226.
J-PARC E34 experiment intends to measure the anomalous magnetic moment and electric dipole moment of muon precisely by a different way from the previous experiment. In this experiment, a low-emittance muon beam is provided using the muons with the thermal energy and the four-stage linac. The demonstration of the first muon RF acceleration with an RFQ linac was conducted and the transverse profile of the accelerated muons was measured last year. As one of the remaining issues for the beam-diagnostic system, the longitudinal beam profile after the RFQ should be measured to match the profile to the designed acceptance of the subsequent accelerator. For this purpose, the new longitudinal beam monitor using the micro-channel plate is under development. The time resolution aims to be around 30 to 40 ps corresponding to 1 % of a period of an operation frequency of the accelerator, which is 324 MHz. On November 2018, the bunch structure of accelerated muons of 89 keV with the RFQ was measured using this monitor at the J-PARC MLF. The latest analysis result of this measurement will be reported in this poster.
 
slides icon Slides MOZZPLM2 [2.618 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLM2  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZZPLM3 Commissioning and First Results of the Fermilab Muon Campus 41
 
  • D. Stratakis, B.E. Drendel, J.P. Morgan, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • N.S. Froemming
    CENPA, Seattle, Washington, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
 
  In the following years, the Fermilab Muon Campus will deliver highly polarized muon beams to the Muon g-2 Experiment. The Muon Campus contains a target section wherein secondaries are produced, the delivery ring which separates the muons from the rest of the beam and a sequence of beamlines that transports them to the Muon g-2 storage ring. Here, we report the first results of beam measurements at the Muon Campus with emphasis on the key achievements that have contributed to the successful beam delivery to the Muon g-2 Experiment. These achievements include the production of an intense secondary beam from the target, it’s transport over 2 km, the successful monitoring of muons from the available diagnostics and the development of techniques for measuring the transverse optics. We also present detailed comparisons between experimental data and simulation and discuss the similarities and differences observed.  
slides icon Slides MOZZPLM3 [2.846 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLM3  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB045 Future High Power Proton Drivers for Neutrino Beams 662
 
  • D.C. Plostinar, M. Eshraqi, B. Gålnander
    ESS, Lund, Sweden
  • V.A. Lebedev
    Fermilab, Batavia, Illinois, USA
  • C.R. Prior
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • Y. Sato
    KEK, Ibaraki, Japan
  • J.Y. Tang
    IHEP, Beijing, People’s Republic of China
 
  Funding: ESSnuSB has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 7774.
Over the last two decades, significant efforts were made through several international studies to identify and develop technical solutions for potential Neutrino Factories and Superbeam Facilities. With many questions now settled, as well as clearer R&D needs, various proposals are being made for future facilities in China, Europe, Japan and North America. These include both developing and adapting existing machines as well as green-field solutions. In this paper, we review all the major accelerator programmes aimed at delivering high-power proton beams for neutrino physics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB045  
About • paper received ※ 22 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS082 Status of ESS Linac Upgrade Studies for ESSnuSB 1038
 
  • B. Gålnander, M. Eshraqi, C.A. Martins, R. Miyamoto
    ESS, Lund, Sweden
  • M. Collins
    Lund Technical University, Lund, Sweden
  • A. Farricker
    CERN, Geneva, Switzerland
 
  Funding: ESSnuSB has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777419.
The European Spallation Source (ESS), currently under construction in Lund, Sweden, is the world’s most powerful neutron spallation source, with an average power of 5 MW at 2.0 GeV. In the ESS neutrino Super Beam Project (ESSnuSB) it is proposed to utilise this powerful accelerator as a proton driver for a neutrino beam that will be sent to a large underground Cherenkov detector in Garpenberg, mid-Sweden. In this paper we discuss the required modifications of the ESS linac to reach an additional 5 MW beam power for neutrino production in parallel to the spallation neutron production.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS082  
About • paper received ※ 17 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB117 Disk and Washer Coupled Cavity Linac Design and Cold-Model for Muon Linac 1924
 
  • M. Otani, N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • K. Futatsukawa, T. Mibe, F. Naito
    KEK, Ibaraki, Japan
  • K. Hasegawa, T. Ito, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Iinuma, Y. Nakazawa
    Ibaraki University, Ibaraki, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
 
  Funding: This work was supported by JSPS KAKENHI Grant Numbers JP15H03666, JP 16H03987, JP18H03707.
A disk and washer (DAW) coupled cavity linac (CCL) has been developed for a middle velocity part in a muon linac at the J-PARC E34 experiment. It will accelerate muons from v/c = 0.3 to 0.7 at an operational frequency of 1296 MHz. In this poster, the cavity designs, beam dynamics designs, and the cold-model measurements will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB117  
About • paper received ※ 30 April 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)