A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W  

linear-collider

Paper Title Other Keywords Page
MOM2IS03 Low-Dispersion Wake Field Calculation Tools simulation, electromagnetic-fields, linac, vacuum 35
 
  • M. Kärkkäinen, E. Gjonaj, T. Lau, T. Weiland
    TEMF, Darmstadt
  Funding: This work was partially funded by EUROTeV (RIDS-011899), DFG (1239/22-3) and DESY Hamburg.

Extremely short bunches are used in future linear colliders, such as the International Linear Collider (ILC). Accurate and computationally efficient numerical methods are needed to resolve the bunch and to accurately model the geometry. In very long accelerator structures, computational efficiency necessitates the use of a moving window in order to save memory. On the other hand, parallelization is desirable to decrease the simulation times. Explicit schemes are usually more convenient to parallelize than implicit schemes since the implementation of a separate potentially time-consuming linear solver can thus be avoided. Explicit numerical methods without numerical dispersion in the direction of beam propagation are presented for fully 3D wake field simulations and for the special case of axially symmetric structures. The introduced schemes are validated by comparing with analytical results and by providing numerical examples for practical accelerator structures. Conformal techniques to enhance the convergence rate are presented and the advantages of the conformal schemes are verified by numerical examples.

 
slides icon Slides  
 
TUPPP31 Eigenmode Expansion Method in the Indirect Calculation of Wake Potential in 3D Structures simulation, radio-frequency, higher-order-mode, collider 148
 
  • X. Dong, E. Gjonaj, W. F.O. Müller, T. Weiland
    TEMF, Darmstadt
  Funding: EUROFEL (RIDS-011935), DESY Hamburg

The eigenmode expansion method was used in the early 1980’s in calculating wake potential for 2D rotational symmetric structures. In this paper it is extended to general 3D cases. The wake potential is computed as the sum of two parts, direct and indirect ones. The direct wake potential is obtained by an integral of field components from a full wave solution, which stops just at the end of the structure. The indirect wake potential is then calculated analytically through the eigenmode expansion method. This is to avoid the full wave modeling of a very long outgoing beam pipe, which is computational expensive. In our work, the Finite Integration Technique (FIT) with moving mesh window is used to model the structure. The fields are recorded at the truncation boundary as a function of time. These fields are then expanded according to discrete eigenmodes of the outgoing pipe, and the eigenmode coefficients are found out at each time step. Then, the coefficients are transferred into frequency domain and the integral of wake fields along a path to infinity is computed analytically. In the case that the moving mesh window is narrow, appropriate exploration of time domain coefficients is necessary. Numerical tests show that the proposed method provides an accurate result with as less as three modes for a collimator structure.

 
 
WEPPP08 Computation of transfer maps from magnetic field data in large aspect-ratio apertures wiggler, damping, dynamic-aperture, emittance 198
 
  • C. E. Mitchell, A. Dragt
    University of Maryland, College Park, Maryland
  Simulations indicate that the dynamic aperture of the proposed ILC Damping Rings is dictated primarily by the nonlinear properties of their wiggler transfer maps. Wiggler transfer maps in turn depend sensitively on fringe-field and high-multipole effects. Therefore it is important to have a detailed and realistic model of the interior magnetic field, including knowledge of high spatial derivatives. Modeling of these derivatives is made difficult by the presence of numerical noise. We describe how such information can be extracted reliably from 3-dimensional field data on a grid as provided, for example, by various 3-dimensional finite element field codes (OPERA-3d) available from Vector Fields. The key ingredients are the use of surface data and the smoothing property of the inverse Laplacian operator. We describe the advantages of fitting on an elliptic cylindrical surface surrounding the beam, as well as extensions to more general domain geometries useful for magnetic elements with large saggitta.  
 
WEA2IS01 Status and Future Developments in Large Accelerator Control Systems controls, collider, site, diagnostics 239
 
  • K. S. White
    Jefferson Lab, Newport News, Virginia
  Funding: This work was supported by DOE contract DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab.

Over the years, accelerator control systems have evolved from small hardwired systems to complex computer controlled systems with many types of graphical user interfaces and electronic data processing. Today’s control systems often include multiple software layers, hundreds of distributed processors, and hundreds of thousands of lines of code. While it is clear that the next generation of accelerators will require much bigger control systems, they will also need better systems. Advances in technology will be needed to ensure the network bandwidth and CPU power can provide reasonable update rates and support the requisite timing systems. Beyond the scaling problem, next generation systems face additional challenges due to growing cyber security threats and the likelihood that some degree of remote development and operation will be required. With a large number of components, the need for high reliability increases and commercial solutions can play a key role towards this goal. Future control systems will operate more complex machines and need to present a well integrated, interoperable set of tools with a high degree of automation. Consistency of data presentation and exception handling will contribute to efficient operations. From the development perspective, engineers will need to provide integrated data management in the beginning of the project and build adaptive software components around a central data repository. This will make the system maintainable and ensure consistency throughout the inevitable changes during the machine lifetime. Additionally, such a large project will require professional project management and disciplined use of well-defined engineering processes. Distributed project teams will make the use of standards, formal requirements and design and configuration control vital. Success in building the control system of the future may hinge on how well we integrate commercial components and learn from best practices used in other industries.

 
slides icon Slides  
 
WEA4IS01 Superconducting Cavity Design for the International Linear Collider simulation, damping, dipole, collider 271
 
  • A. C. Kabel, V. Akcelik, A. E. Candel, L. Ge, K. Ko, L. Lee, Z. Li, C.-K. Ng, E. E. Prudencio, G. L. Schussman, R. Uplenchwar, L. Xiao
    SLAC, Menlo Park, California
  The International Linear Collider (ILC) is the highest priority future accelerator project in High Energy Physics whose R&D is presently the focus of the Global Design Effort (GDE). SLAC's Advanced Computations Department (ACD) is involved in the accelerating cavity design for the ILC main linac using the advanced tools developed under the US DOE SciDAC initiative. The codes utilize higher-order finite elements for increased accuracy and are in production mode on distributed memory supercomputers at NERSC and NCCS to perform the large-scale simulations needed by the ILC cavity design. Presently the code suite includes the eigensolver Omega3P for calculating mode damping, the time-domain solver T3P for computing wakefields, and the particle tracking code Track3P for simulating multipacting and dark current. This talk will provide an overview of their applications to the baseline TDR cavity design, and the alternate Low-Loss and Ichiro designs. Numerical results on HOM damping, cavity deformations, multipacting, and trapped modes in multi-cavity structures will be presented. Design issues with the input coupler and the HOM notch filter will also be addressed.  
slides icon Slides