
EIGENMODE EXPANSION METHOD IN THE INDIRECT CALCULATION 

OF WAKE POTENTIAL IN 3D STRUCTURES*

X. Dong**, E. Gjonaj, W. F. O. Mueller and T. Weiland 

Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF) 

Schlossgartenstrasse 8, 64289 Darmstadt, Germany

Abstract
The eigenmode expansion method was used in the early 

1980’s in calculating wake potential for 2D rotational 

symmetric structures. In this paper, it is extended to 

general 3D cases. The idea is to calculate the indirect 

wake contributed by the infinitely long outgoing pipe 

analytically based on the field dependence of zjk ze .

Numerical results show the accuracy and efficiency of the 

method. 

INTRODUCTION

The determination of wake potentials and impedances 

is important in the design of accelerators. It is difficult to 

calculate the wake potential directly by an integration of 

electric field along a very long outgoing beam pipe, 

especially, when the bunch length is short. An indirect 

integration method was proposed for 2D rotational 

symmetric structures, in which the integral path was 

shifted to the boundary of beam pipe [1, 2]. Later this idea 

was generalized [3]. For 3D cavity-like structures 

(provided that the minimum aperture of the structure is 

larger than the aperture of the beam pipe), the wake 

potentials at beam positions could be found by solving a 

Poisson’s equation with known boundary wake potentials 

[4]. This method has been implemented in the code 

MAFIA. Another approach was given in [5] for 3D 

structures ending with round beam pipe.  

There was no general method available for arbitrary 3D 

structures when we submitted the abstract of this paper. It 

was very recently that we found a submitted paper 

mentioning also the eigenmode expansion method [6]. 

The ideas of our work and ref. [6] (see section IV. D) are 

the same, despite slight differences in the implementation. 

Meanwhile, we noted a further generalization of the 

indirect method into 3D presented at EPAC’06 [7]. In this 

approach, a TM-/TEM- potential is defined in the 

transverse plane such that the indirect wake is the value of 

the potential at bunch position. This potential can be 

extracted by solving the Poisson’s equation in a transverse 

plane of the structure.  

In this paper, we describe the eigenmode expansion 

method in calculating the longitudinal wake potential for 

general 3D structures. The transverse one could be 

obtained by applying the Panofsky-Wenzel theorem [8]. 

The wake potential is computed as a sum of two parts, 

direct and indirect ones. The direct wake potential is 

obtained by a full wave discrete solution, which stops 

after covering all the structure discontinuities. The 

indirect wake potential is then calculated analytically 

through the eigenmode expansion of the field values 

recorded at the truncation aperture. Numerical results are 

compared to the generalized 3D method given in [7]. 

EIGENMODE EXPANSION METHOD 

We use the Finite Integration Technique (FIT) [9-11] 

with moving mesh window [12] to calculate the direct 

wake potential. As shown in Fig. 1, the full wave 

simulation stops after the bunch passing all the 

discontinuity. The zE  fields are recorded at the truncation 

boundary ( 0z ) as a function of time.  

Figure 1: Sketch of the wake field integration regions. 

The indirect wake potential is given by 
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It is known that the TM fields inside the waveguide 

satisfy [8, 2] 
2 2 2 0z zk E                      (2) 

By solving the eigenvalue problem  
2 2 0zk E                              (3) 

the electric field can be written as a combination of 

discrete eigenmodes 

( , ) ( , )z n n

n

E x y c E x y                        (4) 

where ( , )nE x y  and nc  are the eigenvector and 

eigenmode coefficient, respectively. As obtained from the 

FIT solution the electric field zE  at 0z  plane as a 

function of time, we have 

( , , , 0) ( ) ( , )z n n

n

E t x y z c t E x y              (5) 

where  ___________________________________________  
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is the time domain eigenmode expansion coefficient. The 

electric field zE  at a propagation distance z  is given by  

, ( )
( , , , ) ( ) ( , ) z njk z

z n n

n

E x y z C E x y e        (7) 

In (7), zE  is written in frequency domain since the 

propagation constant zk  is frequency dependent. 

Therefore, the time domain eigenmode coefficient ( )nc t

must be transferred into frequency domain to get ( )nC .

The propagation constant is given by 

2 2

, ,( )z n nk c k                        (8) 

where ,nk  is the eigenvalue obtained from the solution 

of (3). For decaying modes when 
2 2

,nc k , ,z nk  is 

imaginary and must be taken as  

22
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Transferring (7) back into time domain and integrating 

zE  along a path to infinity leads to  
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is calculated by an inverse Fourier transform (IFFT). It is 

worth noting that decaying modes contribute to the 

indirect wake potential. However, as higher order modes 

decay faster while propagating in the waveguide, their 

contribution becomes smaller if the full wave solution is 

extended into the outgoing pipe for a certain distance (one 

or two mesh window size). In this way, the number of 

modes to be considered is greatly reduced. Finally, the 

wake potential is calculated by 

// //,

1
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n

W s W s E x y W s
Q

           (12) 

where //, ( )dW s  is the direct wake potential obtained from 

the FIT solution.  

Fig. 2 shows a flow chart of the eigenmode expansion 

method. In the second step, the eigenvalue problem could 

be solved either numerically or analytically with known 

waveguide modes of the beam pipe. The latter one is 

more computationally efficient but has limited 

applications. Furthermore, an analytical solution is not 

consistent with the discrete FIT systems and thus actually 

less accurate than a numerical solution in some sense. 

Special attention has to be paid in the third step in 

calculating the frequency domain eigenmode coefficient 

( )nC . As we use moving mesh solution for the direct 

wake fields, ( )nc t  is available only within the mesh 

window. In this case, direct Fourier transform of ( )nc t

suffers from serious Gibbs effect. To avoid this problem, 

appropriate extrapolation of ( )nc t  is necessary. We tried 

two possible extrapolations, the first is a linear extension 

with Gaussian window, given by 
2

, 1( ) 1 exp

m t

n w tw n m

ext

m
c t m t k t c

M
,

1... extm M                            (13) 

where twk  is the slope of the coefficient signal at the last 

point of the time window, extM  is the number of 

extension points. The second extrapolation is done by 

using the autoregressive (AR) analysis [13]. Both of the 

two schemes work well. Examples are shown in the next 

section to describe these extrapolations. 

Solve eigenvalue problem 

,( ),  ( , ),  n n nc t E x y k

FFT 

( ) ( )n nc t C

Full wave solution 

, ( ),  ( , , 0, )d zW s E x y z t

                                IFFT 

,( ) / ( ) ( )n z n nC j c k W s

Calculate wake potential 
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Figure 2: Flow chart of the procedures. 
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NUMERICAL RESULTS 

We show some numerical examples to test the 

efficiency of the eigenmode expansion method.  

First, we consider a circular collimator since its wake 

potential can be found by a 2D simulation with Napoly’s 

integration. The structure and parameters are given in Fig. 

3. The length of bunch is 0.2 mm. In Fig. 4, 3D results 

from the eigenmode expansion method are compared to 

both 2D result from Napoly’s integration and 3D results 

from Henke’s method. As can be seen in Fig. 4, the results 

agree very well with each other. The size of mesh window 

is 40 grid points and the number of FFT points used is 

128. Fig. 5 shows the coefficients ( )nc t  for the two 

extrapolations of the first three modes. In some cases, the 

extrapolation by autoregressive analysis requires more 

extension points since the signal might attenuate slowly. 

As a second example, we consider a 3D rectangular 

collimator as shown in Fig. 6. The structure is taken from 

the ILC-ESA beam test program [14] (see collimator #4). 

Fig. 7 shows the wake potential of the collimator, where 

the bunch length is set to be 1 mm. The result agrees well 

with that from Henke’s method while only the first three 

modes i.e. 11TM , 13TM  and 15TM  are taken into 

account.

Figure 3: Structure of the circular collimator. 
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Figure 4: Wake potential of the circular collimator as 

shown in Fig. 3.  

Figure 5: Eigenmode coefficients and extrapolations. 

Figure 6: ILC-ESA beam test collimator #4. 
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Figure 7: Wake potential of the rectangular collimator as 

shown in Fig. 6. 
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